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1 Foreword

In this report, we describe the DOpElib Differential Equations and Optimization Envi-
ronment project. Originally, the project was initiated in the year 2009 at Heidelberg
University (Germany) in the numerical analysis group of Rolf Rannacher.

The main feature of DOpElib is to give a unified interface to high level algorithms
such as time-stepping methods, nonlinear solvers and optimization routines. DOpElib is
designed in such a way that the user only needs to write those parts of the code that
are problem dependent while all invariant parts of the algorithms are reusable without
any need for further coding. In particular, the user is enabled to switch between various
different algorithms without the need to rewrite the problem dependent code, though
obviously he or she will have to replace the algorithm object with an other one. This
replacement can be done by replacing the appropriate object at only one point in the
code. In addition to the finite element code provided by deal.II –which at present is
the only FE-toolkit to which we provide an interface– the presented library DOpElib

is user-focused by delivering prefabricated tools which require adjustments by the user
only for parts connected to his specific problem. This is in contrast to deal.II which
leaves the implementation of all high-level algorithms to the user.

An innovative feature of DOpElib is to provide a software toolkit to solve forward PDE
problems as well as optimal control problems constrained by PDE. DOpElib concentrates
on a unified approach for both linear and nonlinear problems by interpreting every PDE
problem as nonlinear and applying a Newton method to solve it. The focus is on the
numerical solution of both stationary and nonstationary problems which come from
different application fields, like elasticity and plasticity, fluid dynamics, and multiphysics
problems such as fluid-structure interactions, porous media flow or phase-field fracture
problems.

At the present stage the following features are supported by the library:

• Solution of stationary and nonstationary PDEs in 1d, 2d, and 3d.

• Various time stepping schemes (based on finite differences), such as forward Euler,
backward Euler, Crank-Nicolson, shifted Crank-Nicolson, and Fractional-Step-Θ
scheme.

• All finite elements of from deal.II including hp-support.

• Self-written line search and trust region newton algorithms for the solution of
optimization problems with PDEs [29]

• Interface to SNOPT for the solution of optimization problems with PDEs and
additional other constraints.
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1 Foreword

• Several examples showing how to solve various kinds of optimization problems
involving stationary PDE constraints.

• Mesh adaptation and goal-oriented error estimation with the dual-weighted resid-
ual (DWR) method.

• Different spatial triangulations for control and state variables.

• Several examples showing the solution of several PDEs including Poisson, Navier-
Stokes, plasticity, fluid-structure interaction problems, a coupled Biot-Lamé-Navier
system, and finally from financial mathematics the Black-Scholes equations.

Outline: The rest of this document is structured as follows: We start with an intro-
duction in Chapter 2 where you will learn what is needed to run DOpElib. Further you
will learn what problems we can solve and how all the different classes work together for
this purpose. This should help you figure out what the different classes do if you are in
need of writing your own algorithm.

Then assuming that you can work to your satisfaction with the algorithms already
implemented we will show you how to create your own running example in Chapter 4.
This will be followed by a detailed description of all examples already shipped with the
library. You can find the examples for the solution of PDEs in Chapter 5 and those for
the solution of optimization problems with PDEs in Chapter 6.

These notes conclude with a section that explains how we do automated testing of the
implementation in Chapter 7. This chapter will be of interest only if you are trying to
implement some new features to the library so that you can check that the new code did
not break anything.

Thanks: The DOpElib project is mainly based on the deal.II finite element library
which has been developed initially by W. Bangerth, R. Hartmann, and G. Kanschat [2]
and now maintained by [3]. Special thanks go to them!

In addition to deal.II, the authors gratefully acknowledge their past experience as well
as discussions with the authors of the software toolkits Gascoigne and RoDoBo [17] and
[32], from which some of the ideas to modularize the algorithms have arisen. Similar
thanks go to the developers of Ipopt, [37].

Last, but not least, we would like to express our gratitude to all contributors listed in
Section 2.5 for their respective contribution to the library.

Special thanks go to Christian Goll who has been a great help in maintaining and
developing this library from 2009 until 2015.
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2 Introduction

2.1 How to get DOpElib

There are two ways to obtain a copy of DOpElib:

A) You can obtain a copy of DOpElib from the developers git repository using
git clone git://git.mathematik.tu-darmstadt.de/dopelib

in the command line of your terminal.

B) You can download the sources as a tar-ball from the project website
http://www.dopelib.net.

2.2 License information

Copyright (C) 2012–2018 by the DOpElib authors

This file is part of DOpElib

DOpElib is free software: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

DOpElib is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more de-
tails.

Please refer to the file LICENSE.TXT included in this distribution for further informa-
tion on this license.

2.3 Contact / Mailinglist

We encourage you to contact us in case you have questions:

dope@dopelib.net

7
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2 Introduction

2.4 References

If you like the library and use it for your own projects, please give credits by referencing
the project DOpElib using the following bibtex entries [15, 18]

@Art ic le {dopel ib ,
T i t l e = {{DOpElib } : {D} i f f e r e n t i a l Equations and
{O} pt im i za t i on {E}nvironment ; {A} Goal Oriented
Software Library f o r So lv ing {PDE} s and Optimizat ion
Problems with {PDE} s } ,

Author = {C. Gol l and T. Wick and W. Wollner } ,
Journal = {Archive o f Numerical Software } ,
Year = {2017} ,
Number = {2} ,
Pages = {1−−14},
Volume = {5} ,
Doi = {10.11588/ ans . 2017 . 2 . 11815}

}

@MISC{dope ,
key = {DOpElib} ,
t i t l e = {The {D} i f f e r e n t i a l {E} quat ion and

{O} pt im i za t i on {E}nvironment : \ t e x t s c {DOpElib}} ,
u r l = {http ://www. dope l ib . net } ,
note = {\ t e x t t t {http ://www. dope l ib . net }}

}

2.5 Contributors & Developers

The library is currently maintained by

• Thomas Wick (Leibniz Universität Hannover)

• Winnifried Wollner (Technische Universität Darmstadt)

We would like to express our gratitude to the former maintainer

• Christian Goll (Maintainer from 2009–2015)

Furthermore, there are more highly appreciated contributions made by

• Seshadri Basava (Gradient robust methods for vector valued problems)

• Bernhard Endtmayer (phase-field fracture, PDE Instat Example 8 - in cooperation
with T. Wick)
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2 Introduction

• Michael Geiger (Examples for Plasticity, and Documentation of several PDE-
Examples)

• Masoud Ghaderi (Augmenting the Documentation)

• Daniel Jodlbauer (Current work on parallelization)

• Uwe Köcher (Makefile compatibility)

• Francesco Ludovici (Augmenting the Documentation)

• Matthias Maier (CMake)

• Katrin Mang (Rothe method for non-stationary problems, phase-field damage ex-
amples)

• Mirjam Walloth (Error estimation in non-stationary problems)

2.6 Software requirements

The library DOpE has been tested to work on both Linux and MAC OSX. See also the
README.OSX file

2.6.1 g++

DOpElib requires a recent g++ (at least 4.8) due to some new C++ features implemented
in C++11. You can check the version number using the command-line argument g++ -v.

Under Linux-systems this typically means that you have to do nothing if you have
a recent version number. Otherwise you can either install the required version of g++
using the appropriate software installation tool, or you can build the required version
from source gcc.gnu.org.

Under MAC OSX, you need to install the XCode tools delivered with the operating
system or available for free developer.apple.com/xcode. Unfortunately, the delivered
version of g++ is too old, so you need to install the real thing. To do so, download,
e.g., MacPorts from macports.org. Once you have installed MacPorts you can use it
to install additional Linux software. First, update the MacPorts installation sudo port

selfupdate after that you can install a new version of g++ using for instance sudo port

install gcc48 to install version 4.8 of the compiler. Afterwards, you need to set the
search path appropriate to find the macports version of g++, to check if this has been
done use g++ -v.

2.6.2 deal.II

This library is mainly based upon deal.II hence in order to run DOpElib you need a
running copy of deal.II.

The deal.II library is open source and is freely available for noncommercial project.
It can be downloaded from http://www.dealii.org/. On this homepage, one also finds

9
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2 Introduction

lots of further information on deal.II as well as an extensive tutorial where many features
of deal.II are discussed in a well-documented example framework. In order to use DOpE,
it is recommendable to be roughly acquainted with deal.II.

When installing deal.II (at least version 8.0) you should take care to configure it to
use UMFPACK.

Remark 2.6.1. Our current DOpElib installation has been successfully tested for deal.II
version 9.0.0.

A configuration of deal.II working with DOpElib can be obtained with the following
commands assuming that one is currently in the directory where the deal.II sources are
located.

mkdir bu i ld
cd bu i ld
cmake −DCMAKE INSTALL PREFIX=/path/ to / i n s t a l l / d i r . . / dea l . I I
make i n s t a l l

If in addition, features are desired corresponding flags need to be passed to cmake. An
excellent description is provided on the deal.II webpage

http ://www. d e a l i i . org / 8 . 5 . 0 / readme . html

Currently, for all features of DOpElib the following settings are useful to be passed to
cmake

cmake −DCMAKE INSTALL PREFIX=[path to i n s t a l l d i r ] \
−DDEAL II WITH UMFPACK=true \
−DDEAL II FORCE BUNDLED UMFPACK=true \
−DDEAL II WITH TRILINOS=true \
−DTRILINOS DIR=[path to t r i l i n o s ] \
−DDEAL II WITH MPI=true \
−DDEAL II WITH P4EST=true \
−DP4EST DIR=[path to p4est ] \
[ Path to dea l . I I s ou r c e s ]

2.6.3 deal.II ThirdPartyLibraties

To install third party libraries used for deal.II we recommend to use the candi script:

https : // github . com/ koecher / candi

On this webpage, you will find also enough information how to use the candi script.

2.6.4 ThirdPartyLibraries

In order for DOpE to be able to auto-detect some of the installed Third Party Libraries you
should generate according links in the ThirdPartyLibs. See also ThirdPartyLibs/README.
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2 Introduction

SNOPT

If you would like to use the features offered in our SNOPT wrapper. You will need to
obtain a license for SNOPT http://www.sbsi-sol-optimize.com/asp/sol_product_

snopt.htm. Unfortunately this is at present not available for free, but you should check
if there is a department license already available. For further information you should con-
sult the file ThirdPartyLibs/SNOPT.INSTALLNOTES. In particular you need to configure
deal.II at least with enabled UMFPACK.

IPOPT

If you would like to use the optimization routines offered by IPOPT https://projects.

coin-or.org/Ipopt you can install this yourself and add a symlink as described in
ThirdPartyLibs/README.

Alternatively, you can use installation script ThirdPartyLibs/install-free-libs.sh.
Note that to use all available linear solvers you may have to obtain a corresponding li-
cense manually. This is true in particular for the HSL solvers MA27, . . .. For information
on these see the information provided by the installation script.

The installation is straightforward and has been tested on OpenSUSE 12.1, Ubuntu
14.04 LTS and 16.04 LTS machines as well as on MAC. At the end of the installation
do not forget to add IPOPT to your LD LIBRARY PATH:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
I n s t a l l a t i o n complete !

Add /home / . . . . / dope l ib −4.0/ ThirdPartyLibs / ipopt / l i b 6 4
to your LD\ LIBRARY\ PATH v a r i a b l e

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2.7 Installation

Having deal.II and other possible libraries installed, we turn now our focus to the instal-
lation of DOpElib itself:

• We automatically search for deal.II to your home directory, i.e., if deal.II is
located in
~/deal.II you don’t have to do anything.

• Alternatively, if you prefer another position you can install it anywhere but need
to set the DEAL II DIR environment variable, so that it will be found by cmake,
i.e.,

export DEAL II DIR=[path to dea l . i i ]

Remark 2.7.1. Be careful if you work in several terminal windows and have several
deal.II versions. In this case, the export-command might have to be done again
in that new window. Otherwise another deal.II version might be linked resulting
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2 Introduction

in linker errors or segmentation faults without useful error message. In order to
check to which deal.II version DOpE is linked, type

echo ${DEAL II DIR}

in the current terminal window.

Remark 2.7.2. Furthermore: please make sure that you point in the above path
to the deal.II install folder and NOT in the main directory of your deal.II in-
stallation.

Detailed installing instructions for deal.II (here the last version 9.0.0) can be found
on http://www.dealii.org/9.0.0/readme.html. These installation instructions
are descriptive enough and we omit any further comments and refer to their web-
page.

• Get a copy of DOpElib, see Section 2.1 for details.

• If you obtained a tar-ball, unpack in your preferred directory:

ta r −xz f dope l ib −4.0 . ta r . gz

to get a directory

dope l ib −4.0/

containing the source files. If you cloned the git repository you already have a
directory; dopelib by default, containing the sources.

• Change to the directory with the sources, and then to the subdirectory DOpEsrc.
Once there, to build DOpElib you can call

make c−a l l

to build and configure the library using cmake.

Remark 2.7.3. Due to very frequent problems at this stage, we strongly recommend
to read first now Section 2.8 before yielding to despair.

You also get various alternatives by just typing make, including the generation of
the documentation. Building the documentation will require latex or doxygen to
be installed on your computer.

• If your would like to check the examples, change to the subfolder Examples from
the main source directory. Typing

make

will again provide you with the available options:

12
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2 Introduction

===========================================================================
= Makef i l e f o r the DOpE documentation
=
===========================================================================
=
=
= The f o l l ow i n g t a r g e t s e x i s t :
=
= c−a l l : Make a l l examples us ing cmake
=
= c lean : Cleaning up a l l examples
=
= t e s t s : Run a l l t e s t param data .
=
= c−cat : Run clean , run c−a l l , run t e s t s ( combine these commands)=
= doc : Create documentation in pdf f i l e format v ia latexmk
=
= d i s t c l e a n : Cleaning up , i n c l ud ing documentation
=
= warncheck : Checks whether a l l Examples compi le without warnings
=
===========================================================================

The options are c− all and c− cat utilizing the cmake build system to create the
executables (and optionally run the tests if all went well).

It is important to generate the examples via make c-all in the home folder of the
examples and not as in deal.II by using cmake in the specific example itself. With
this you would currently destroy the delivered Makefile; which is fine if you don’t
intend to use it but some automated tests will fail. See also the FAQ below.

• If you wish to test if everything worked. To do so you can change to the Examples

directory and make tests which will give you a list of all the examples and whether
they behave as expected by the library, see also Chapter 7.

• If you want to use some of the supported third party libraries install them and
follow the instructions in ThirdPartyLibs/README. There may be further informa-
tion in some ThirdPartyLibs/*.INSTALLNOTES that you may want to consider.

As example, the installation of IPOPT works as follows:
In the path ThirdPartyLibs> type in the terminal
./install-free-libs.sh

2.8 FAQs

1.) When building the library I get an error message:

• unrecognized command line option ”-std=c++11”
This means that your compiler is too old. You can check the version of your

13
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compiler using g++ -v. If the version is lower than 4.8 you need to get a newer
compiler version.

2.) I have installed a new g++ compiler but g++ -v still finds the old one :
This means that your computer does not find the new compiler. Try which g++ to see
whether it appears in the list of available compilers (but is maybe too far in the back
of the list.) Then you should modify your $PATH environment variable so that the new
g++ compiler appears.

If which g++ only returns one g++ compiler, then probably you need to set an ap-
propriate symlink. Or more robust, you can configure deal.II to use the compiler you
intend by configuring deal with the right compiler. To do so adjust the CC and CXX

environment variable appropriately before configuring deal.II

For example on Mac OSX you will find only one g++ compiler /usr/bin/g++ which
is in fact a symlink to /usr/bin/g++-4.2. So that you need to install a newer compiler.
You can do so, for instance using macports. Then you can find, e.g., g++ version 4.8
on OSX Lion in /opt/local/bin/g++-mp-4.8.

3.) Problem using make c-all in the Examples folder :

Sometimes people encounter problems when calling make c-all. This can be due to
several reasons:

• If you abort the script for the c-make auto-configuration prematurely, you might
encounter the following error:

[ . . . ] > make c−a l l
cd OPT/StatPDE/Example1 ; make −s c−a l l
make [ 2 ] : ∗∗∗ No t a r g e t s s p e c i f i e d and no make f i l e found . Stop .
make [ 1 ] : ∗∗∗ [ c−a l l ] Error 2
make : ∗∗∗ [OPT/StatPDE/Example1 ] Error 2

This is due to the fact, that some unfinished files from the previous run are in the
way of the script. Go to the corresponding examples folder, and delete the folder
autobuild.

• Some times the Makefiles in the example folders are damaged, e.g., if an in-source
cmake build was attempted in the example folders. This gives an error message

[ . . . ] > make c−a l l
cd OPT/StatPDE/Example1 ; make −s c−a l l
make [ 1 ] : ∗∗∗ No r u l e to make t a r g e t ‘ c−a l l ’ . Stop .
make : ∗∗∗ [OPT/StatPDE/Example1 ] Error 2

If this happens, go to the corresponding example directory, and replace the corre-
sponding Makefile from a clean source, e.g., by a new checkout of the Makefile if
you are using the git version.

Then try again make c-all (make always sure that before typing make c-all that the
deal.II path is exported - see above).

14
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4.) Different g++ compilers are used for compiling DOpElib and the
Examples folder

On OpenSUSE and Fedora systems we have observed the following error when calling
make c-all in the examples folder:

[ . . . ] > make c−a l l
cd OPT/StatPDE/Example1 ; make −s c−a l l
[ 50%] Bui ld ing CXX ob j e c t CMakeFiles/DOpE−OPT−StatPDE−Example1 . d i r /main . cc . o
c++: e r r o r : unrecognized command l i n e opt ion ’−fopenmp−simd ’
c++: e r r o r : unrecognized command l i n e opt ion ’− std=c++14’
CMakeFiles/DOpE−OPT−StatPDE−Example1 . d i r / bu i ld . make : 6 2 :

r e c i p e f o r t a r g e t ’ CMakeFiles/DOpE−OPT−StatPDE−Example1 . d i r /main . cc . o ’ f a i l e d
make [ 4 ] : ∗∗∗ [ CMakeFiles/DOpE−OPT−StatPDE−Example1 . d i r /main . cc . o ] Error 1
CMakeFiles/Makef i l e2 : 1 3 1 : r e c i p e f o r t a r g e t

’ CMakeFiles/DOpE−OPT−StatPDE−Example1 . d i r / a l l ’ f a i l e d
make [ 3 ] : ∗∗∗ [ CMakeFiles/DOpE−OPT−StatPDE−Example1 . d i r / a l l ] Error 2
Make f i l e : 8 3 : r e c i p e f o r t a r g e t ’ a l l ’ f a i l e d
make [ 2 ] : ∗∗∗ [ a l l ] Error 2
. . / . . / . . / . . / / Examples/Make . g l o b a l o p t i o n s : 2 : r e c i p e f o r t a r g e t ’ c−a l l ’ f a i l e d
make [ 1 ] : ∗∗∗ [ c−a l l ] Error 2
Make f i l e : 2 4 : r e c i p e f o r t a r g e t ’OPT/StatPDE/Example1 ’ f a i l e d
make : ∗∗∗ [OPT/StatPDE/Example1 ] Error 2

The reason for this problem might be that the variables c++ and g++ as well as cc
and gcc used for compiling deal.II and DOpElib do not match.
You can remove the old Examples/autobuild folder and set the compilers manually by

export CXX=path/ to /g++−compi ler
export CC=path/ to /gcc−compi ler

where path/to/compiler should be the path to the compiler, DOpElib (and deal.II) was
compiled with. You can check the current version of your gcc- and g++-compiler with

gcc −−v e r s i on
g++ −−v e r s i on

It is even better if you automatically set these variables; e.g., using your $HOME.profile
file.

Alternatively you can set the variable c++ to your g++ and the variable cc to gcc
using update-alternatives as for example 1

sudo update−a l t e r n a t i v e s −− i n s t a l l / usr / bin /c++ c++ / usr / bin /g++−6 60
sudo update−a l t e r n a t i v e s −− i n s t a l l / usr / bin / cc cc / usr / bin /gcc−6 60

5.) Different g++, cc, cxx compilers are used for compiling DOpElib and
the Examples folder

Similar to the previous error, using mpi-compilers bears a similar problem if the needed
libraries are not in your $PATH. Again this problem seems to appear on OpenSUSE and
Fedora systems where this happens by default. When running make c-all this gives a
message like

1Thanks to Florian Tischler (Admin at RICAM Linz) for the help.
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Linking CXX executab l e . . /DOpE−PDE−StatPDE−Example1
/ usr / [ . . . ] / x86 64−suse−l i nux / bin / ld : cannot f i n d −lmpi usempi
/ usr / [ . . . ] / x86 64−suse−l i nux / bin / ld : cannot f i n d −lmpi mpifh
/ usr / [ . . . ] / x86 64−suse−l i nux / bin / ld : cannot f i n d −lmpi
c o l l e c t 2 : e r r o r : ld returned 1 e x i t s t a t u s

To fix this issue, you need to set the correct environment variables. We assume you
have a standard installation of openmpi done. If not you can find the correct replacement
for the path /usr/lib64/mpi/gcc/openmpi/bin using whereis mpicxx.

export DEAL II DIR =y o u r m p i d e a l I I v e r s i o n
export PATH=/usr / l i b 6 4 /mpi/ gcc /openmpi/ bin : ${PATH}
export CC=mpicc ; export CXX=mpicxx ; export FC=mpif90 ; export FF=mpif77

Then compile first the DOpElib library and then the Examples folder with these
settings. Possibly pay attention that also the deal.II version has been compiled with this
MPI path.

Remark 2.8.1. Be careful that you work in the same shell when only using ‘export’. Or
include the export lines into the $HOME/.bash rc $HOME/.profile file to assert that the
correct compiler is always used.
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3 The Structure of DOpElib

This library is designed to allow easy implementation and numerical solutions of prob-
lems involving partial differential equations (PDEs). The easiest case is that of a PDE
in weak form to find some u

a(u)(φ) = 0 ∀φ ∈ V,

with some appropriate space V . More complex cases involve optimization problems given
in the form (OPT)

min J(q, u)

s.t. a(q, u)(φ) = 0 ∀φ ∈ V,
a ≤ q ≤ b,
g(q, u) ≤ 0,

where u is a FE-function and q can either be a FE-function or some fixed number of
parameters, a and b are constraint bounds for the control q, and g(·) is some state
constraint.

3.1 Overview

The main library can be roughly split into three parts:

DOpEsrc, Examples, ThirdPartyLibs

Here, ThirdPartyLibs was already previously discussed. The Examples will be discussed
in the chapters 4 to 8. In this chapter, we concentrate on DOpEsrc. Therein, the library
implementation is divided into the following subfolders:

container reducedproblems wrapper

network source templates

basic include opt_algorithms

interfaces problemdata tsschemes

3.2 Problem description

In order to allow our algorithms the automatic assembly of all required data we need
to have some container which contains the complete problem description in a common
data format. For this we have the following classes in DOpEsrc/container
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3 The Structure of DOpElib

• pdeproblemcontainer.h Is used to describe stationary PDE problems.

• instatpdeproblemcontainer.h This will be implemented once we have nonsta-
tionary optimization problems running to avoid error duplication in the coding
process.

• optproblemcontainer.h Is used to describe OPT problems governed by stationary
PDEs.

• instatoptproblemcontainer.h Is used to describe OPT problems governed by
nonstationary PDEs. The only difference to the stationary case is that we need to
specify a time-stepping method.

In order to fill these containers there are two things to be done, first we need to actually
write some data, for instance, the semilinear form a(·)(·), a target functional J(·), etc.,
which describe the problem. Then we have to select some numerical algorithm com-
ponents like finite elements, linear solvers . . .. The latter ones should be written such
that when exchanging these components none of the problem descriptions should require
changes. Note that it still may be necessary to write some additional descriptions, e.g.,
if you solve the PDE with a fix point iteration you don’t need derivatives but if you want
to use Newton’s method, derivatives are needed.

We will start by discussing the problem description components implemented so far

3.3 Numeric components

These are the components from which a user needs to select some in order to actu-
ally solve the given problem. They will not require any rewriting, but sometimes it is
advisable to write other than the default parameter into the param file for the solution.

3.3.1 Space-time handler

First we need to select a method how to handle all dofs in space and time.

• basic/spacetimehandler base.h This class is used to define an interface to the
dimension independent functionality of all space time dof handlers.

• basic/statespacetimehandler.h Another intermediate interface class which adds
the dimension dependent functionality if only the variable u is considered, i.e., a
PDE problem.

• basic/spacetimehandler.h Same as above but with both q and u, i.e., for OPT
problems.

• basic/mol statespacetimehandler.h Implementation of a method of line space
time dof handler for PDE problems. It has only one spatial dofhandler that is used
for all time intervals.
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• basic/mol spacetimehandler.h Same as above for OPT problems. A separate
spatial dof handler for each of the variables q and u is maintained but only one
triangulation.

• basic/mol multimesh spacetimehandler.h Same as above, but now in addition
the triangulations for q and u can be refined separately from one common ini-
tial coarse triangulation. Note that this will in addition require the use of the
multimesh version for integrator and face- as well as elementdatacontainer.

Note that we use these for stationary problems as well, but then you don’t have to
specify any time information.

3.3.2 Container classes

Second you will need to specify some container classes to be used to pass data between
objects. At present you don’t have much choice, but you may wish to reimplement some
of these if you need data that is not currently included in the containers.

• container/elementdatacontainer.h This object is used to pass data given on
the current element of the mesh to the functions in PDE, functional, . . ..

• container/facedatacontainer.h This object is used to pass data given on the
current face of the mesh to the functions in PDE, functional, . . ..

• container/multimesh elementdatacontainer.h This is the same as the ele-
mentdatacontainer, but it is capable to handle data defined on an alternative
triangulation.

• container/multimesh facedatacontainer.h This is the same as the facedata-
container, but it is capable to handle data defined on an alternative triangulation.

• container/integratordatacontainer.h This contains some data that should be
passed to the integrator like quadrature formulas and the above element and face
data container.

• container/refinementcontainer.h The classes defined herein are given to the
RefineSpace method of the SpaceTimeHandler and determine how we define the
spatial mesh (i.e. globally or locally with a fixed fraction, fixed number or ’opti-
mized’ strategy).

3.3.3 Time stepping schemes

Third, at least for nonstationary PDEs we need to select a time stepping scheme the file
names of which are mostly self explanatory:

• tsschemes/forward euler problem.h

• tsschemes/shifted crank nicolson problem.h
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• tsschemes/backward euler problem.h

• tsschemes/fractional step theta problem.h Note that the use of this scheme
requires a special Newton solver, which is, however, already implemented for the
convenience of the user!

• tsschemes/crank nicolson problem.h

3.3.4 Integrator routines

Finally, we need to select a way how to integrate and solve linear and nonlinear equations

• templates/integrator.h This class computes integrals over a given triangulation
(including its faces).

• templates/integrator multimesh.h The same as above but it is possible that
some of the FE functions are defined on an other triangulation as long as the have
a common coarse triangulation.

• templates/integratormixeddims.h This is used to compute integral which are
given in another (larger) dimension than the current variable. (This is exclusively
used if the control variable is given by some parameters. Which means dopedim

== 0).

3.3.5 Nonlinear solvers

• templates/newtonsolver.h This solves some nonlinear equation using a line-
search Newton method.

• templates/newtonsolvermixeddims.h The same but in the case when there is
another variable in a (larger) dimension is involved. See integratormixeddims.h.

• templates/instat step newtonsolver.h This is a Newton method as above to
invert the next time-step. It differs from the plain vanilla version in that it com-
putes certain data from the previous time step only once and not in every Newton
iteration.

• templates/fractional step theta step newtonsolver.h This is the Newton
solver for the time step in a fractional-step-theta scheme. It combines the compu-
tation of all three sub steps.

3.3.6 Linear solvers

• templates/cglinearsolver.h This is a wrapper for the cg solver implemented in
deal.II. The solver will build and store the stiffness matrix for the PDE.

• templates/gmreslinearsolver.h This is a wrapper for the GMRES solver im-
plemented in deal.II. The solver will build and store the stiffness matrix for the
PDE.

20



3 The Structure of DOpElib

• templates/directlinearsolver.h This is a wrapper for the direct solver imple-
mented in deal.II using UMFPACK. The solver will build and store the stiffness
matrix for the PDE.

• templates/voidlinearsolver.h This is a wrapper for certain cases when we
know that the matrix to be inverted is the identity. It simply copies the right hand
side to the left hand side. This is only needed for compatibility reasons some other
components.

3.4 Problem specific classes

The following classes are used to describe the problem and will usually require some
implementation.

• basic/constraints.h This is used by the spacetimehandlers to compute the num-
ber of constraints from the control and state vectors. It must not be reimplemented
by the user, but needs to be properly initialized if OPT is used with box control
constraints or g(q, u) ≤ 0.

• interfaces/functionalinterface.h This gives an interface for the functional
J(·) and any other functional you may want to evaluate. In general this can be
used as a base class to write your own functionals in examples. We note that we
only need to write the integrands on elements or faces the loop over elements will
be taken care of in the integrator. Specifically, derivatives are written therein, too.

• interfaces/constraintinterface.h This gives an interface for both the con-
trol box constraints as well as the general constraint g ≤ 0. This needs to be
specified if constraints are to be used. If they are not needed a default class
problemdata/noconstraints.h can be used. We note that we only need to write
the integrands on elements or faces the loop over elements will be taken care of in
the integrator.

• interfaces/pdeinterface.h This defines an interface for the partial differential
equation a(q, u)(φ) = 0. This needs to be written by the user. We note that we
only need to write the integrands on elements or faces the loop over elements will
be taken care of in the integrator. Specifically, derivatives are written therein, too.

• interfaces/dirichletdatainterface.h This gives an interface to the Dirichlet
data for a problem. If the Dirichlet data are simply a function (and do not depend
on the control q) one can use the default class
problemdata/simpledirichletdata.h.

3.5 Reduced problems (Solve the PDE)

At times it is nice to remove the PDE constraint in (OPT). This is handled by so called
reduced problems (for algorithmic aspects we refer the reader to [6]). This means that
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the reduced problem implicitly solves the PDE whenever required and eliminates the
variable u from the problem.

• reducedproblems/statpdeproblem.h This is used to remove the variable u in a
stationary PDE problem. This means that call the method
StatPDEProblem::ComputeReducedFunctionals will evaluate the functionals de-
fined in the problem description, i.e., in PDEProblemContainer, in the solution of
the given PDE.

• reducedproblems/statreducedproblem.h This eliminates u from the OPT prob-
lem with a stationary PDE.

• reducedproblems/instatreducedproblem.h The same as above but for a non-
stationary PDE.

• reducedproblems/ipopt problem.h A wrapper file required when solving opti-
mization problems using the reduced ipopt algorithm. This file hides the interface
to IPOPT.

3.6 Optimization algorithms

Now, in order to solve optimization algorithms we need to define some algorithms. At
present we offer a selection of algorithms that solve the reduced optimization problem
where the PDE constraint has been eliminated as explained in the previous section.

• opt algorithms/reducedalgorithm.h An interface for all optimization problems
in the reduced formulation. It offers some test functionality to assert that the
derivatives of the problem are computed correctly.

• opt algorithms/reducednewtonalgorithm.h A line-search Newton algorithm us-
ing a cg method to invert the reduced hessian. Implementation ignores any addi-
tional constraints.

• opt algorithms/reducedtrustregionnewton.h A trust region Newton algorithm
using a cg method to invert the reduced hessian. Implementation ignores any ad-
ditional constraints.

• opt algorithms/reduced snopt algorithm.h An algorithm to solve reduced op-
timization problems with additional control constraints using the third-party li-
brary SNOPT. ((reduced) state constraints are not yet implemented.)

• opt algorithms/reduced ipopt algorithm.h An algorithm to solve reduced op-
timization problems with additional control constraints. using the third-party li-
brary IPOPT. ((reduced) state constraints are not yet implemented.)

• opt algorithms/reducednewtonalgorithmwithinverse.h Line-search Newton al-
gorithm that assumes there exists a method in the reduced problem that can invert
the reduced hessian. (This usually makes sense only if there is no PDE constraint.)
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3.7 Other Components

Beyond these clearly structured groups before there are some classes remaining that do
not fit the above but are important for the user to know.

3.7.1 Vectors

• include/statevector.h This stores all dofs in space and time for the state vari-
able u. It is possible to select whether all this should be kept in memory or or
unused parts can be written to the hard disk.

• include/controlvector.h This stores all dofs in space and time for the control
variable q. At present no time dependence is implemented.

• include/constraintvector.h This stores all dofs in space and time for the non
PDE constraints (and corresponding multipliers). At present no time dependence
is implemented.

Remark 3.7.1. We notice that the behavior of the statevector can be chosen as fullmem,
only recent, or store on disc. In the first state, the RAM memory of the computer
is used. In the second state, only the spatial vectors at the current time step (and the
preious one) are stored. This reduces memory requirements, but also prohibits access
to the whole space-time trajectory after the computation. In the third state, all vectors
are written on disc, to avoid the RAM. This might take some time at the beginning
of a new executing program (cleary depending on the number of spatial and temporal
unknowns and the capabilities of your local machine). In addition, if the program aborts
abnormally in the using store on disc behavior, please make sure to remove manually
the tmp state folder in your Results folder.

3.7.2 Parameter handling

• include/parameterreader.h This file is used to define a parameter reader that
is used to read run time parameters from a given file.

3.7.3 Exception handling

• include/dopeexception.h Defines some Exceptions that are thrown by the pro-
gram should it encounter any unexpected errors.

• include/dopeexceptionhandler.h This class is used to write information con-
tained in the exceptions to the output in a uniform manner.

3.7.4 Output handling

• include/outputhandler.h This file defines an outputhandler object which can
be used to decide whether some information should be written to screen or file. In
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addition it can format output according to some run time parameters given by a
parameter file.

3.8 Data Access

• include/solutionextractor.h This class is used to gain access to the finite ele-
ment solutions stored in the reduced problems.

3.8.1 Constraints and system matrix

• include/userdefineddofconstraints.h This class sets the constraints on the
DOFs of the state and/or control FE solution. DOpE itself builds the hanging-
node-constraints, but the user can reimplement this class and thus include other
constraints as well (for example periodic BC). Note, that the hanging-node-constraints
come first (in case of conflicting constraints.)

• include/sparsitymaker.h This class sets the sparsity pattern for the state FE
solution. The standard implementation is just a wrapper for dealii::DoFTools::
make sparsity pattern, but the user can reimplement this class to allow for more
sophisticated sparsity patterns.

• include/pointconstraintsmaker.h This class allows to set homogeneous Dirich-
let values at given points/components.

3.8.2 HP components

• interfaces/active fe index setter interface.h In the case of hp finite el-
ements, one has to specify for each element which finite element to use. This is
done via this interface.

3.9 Internal structures

3.9.1 Interface Classes

• interfaces/transposeddirichletdatainterface.h This provides an interface
to the functionality required by transposed Dirichlet data. Usually when one applies
Dirichlet data g to a function one has to calculate a continuation Bg which is
defined on the whole domain. In optimization problems when the Dirichlet data
depends on the control one has to evaluate the dual operator B∗ in order to obtain
a representation for the reduced gradient of the objective J . This is done using
the transposed Dirichlet data.

• interfaces/reducedprobleminterface.h In order to allow all algorithms to be
written independent of the given (OPT) problem (and not requiring the problem
as template argument) there is a common base class which defines the required
interfaces.
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• interfaces/pdeprobleminterface.h The same as above but for (PDE) prob-
lems.

3.9.2 Default Classes

• problemdata/noconstraints.h A class that can be used for optimization prob-
lems having only a PDE constraint but no further constraints.

• problemdata/simpledirichletdata.h A class that can be used to implement
Dirichlet data that are given as a fixed function (independent of the control).

3.9.3 Auto-generated Problem Descriptions

• problemdata/stateproblem.h This is the problem description for the (forward/pri-
mal) PDE constraint. Similar descriptors will be build for the other prob-
lems (adjoint, tangent, . . .) when time allows.

• problemdata/initialproblem.h This is the problem descriptor to compute the
finite element representation of the initial values. This is generated by the different
time-stepping schemes based upon the defined representation by the PDE, which
is set to the component wise L2 projection by default.

• problemdata/primaldirichletdata.h This class contains the Dirichlet data for
the forward/primal PDE.

• problemdata/tangentdirichletdata.h This class contains the Dirichlet data for
the tangent PDE, i.e., the first derivative of the Dirichlet data.

• problemdata/transposedgradientdirichletdata.h This contains the transposed
Dirichlet data needed to calculate the gradient of the reduced objective functional,
for detail see interfaces/transposeddirichletdatainterface.h.

• problemdata/transposedhessiandirichletdata.h This contains the transposed
Dirichlet data needed to calculate the hessian of the reduced objective functional,
for detail see interfaces/transposeddirichletdatainterface.h.

3.9.4 Management of Time Dependent Problems

• include/timedofhandler.h DoFHandler responsible for the management of the
timedofs (this is a part of the SpaceTimeDoFHandler-classes). Basically a wrapper
for a 1d deal.II-DoFHandler.

• include/timeiterator.h This class works as an iterator on the TimeDoFHandler.
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3.10 Wrapper classes

• wrapper/dofhandler wrapper.h A wrapper class for the deal.II DoFHandlers.
This class is needed to provide support for the dim = 0 case and to have a uniform
interface to DoFHandler and HPDoFHandler.

• wrapper/fevalues wrapper.h Will be removed soon!

• wrapper/function wrapper.h An interface that allows to use functions that de-
pend not only on space but also on time.

• wrapper/mapping wrapper.h An interface that allows to use deal.II-mappings
as well as deal.II-mapping collections depending of the DoFHandler in use. To
this end, the class has a template parameter DOFHANDLER.

• wrapper/preconditioner wrapper.h Contains wrappers for several of the pre-
conditioners in deal.II. This is required since unfortunately the preconditioners
in deal.II have different interfaces for their initialization.

• wrapper/snopt wrapper.h An interface to the FORTRAN library SNOPT. This
is an additional wrapper to the one provided by SNOPT to allow automatic con-
struction of the functions required by SNOPT using our library.

• wrapper/solutiontransfer wrapper.h A wrapper for the SolutionTransfer class
from deal.II.

• wrapper/dataout wrapper.h A wrapper for the DataOut class from deal.II.

3.11 Other

• basic/dopetypes.h This file contains type definitions used in the library.

• basic/sth internals.h Wrapper for the MapDoFsToSupportPoints function. The
implementation of this changes with the deal.II version in use.

• include/helper.h Collection of various small helper functions.

• reducedproblems/problemcontainer internal.h Houses some functions and vari-
ables common in the various problemcontainer.

• tsschemes/primal ts base.h This class contains the methods which all primal
time stepping schemes share.

• tsschemes/ts base.h This class contains the methods which all time stepping
schemes share.
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4 Example Handling, Creating new
Examples

4.1 Getting started

Beside the fact that DOpElib is still under development, it offers already various different
(linear and nonlinear) examples for a lots of different applications in two and three
dimensions; we refer the reader to the next two Chapters 5 and 6.

To implement new examples or to use existing examples from the library for own
research, the user can simply copy an existing example. In this new example, own code
and changes can be compiled. Here is some advice to get started:

• If you are a first time user of DOpElib with some numerics background, you might
be familiar with the Poisson (or more general Laplace) equation. DOpElib has it
too. Check-out Example 5.1.4, to see how DOpElib implements this well-known
equation in two dimensions or 5.1.6 for its three-dimensional version.

• Before you implement a new example, please check which existing example might
be similar to your goals and get familiar to it. Then, proceed as described in
Section 4.4.

4.2 How to run existing examples

4.2.1 The global way

The easiest way is to first build all examples. Go into

dope l ib /Examples/

Herein, type

make c−a l l

By typing only ‘make’ you will see all options (we also refer to Section 2.7). This
procedure will take some minutes. Afterwards, go into the examples folder of your
choice. For instance:

dope l ib /Examples/PDE/InstatPDE/Example1/ autobu i ld

Herein you create the executable via

make

and then go back via ../ and
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. /DOpE−PDE−InstatPDE−Example1

Or both commands together:

autobui ld> make && cd . . && . /DOpE−PDE−InstatPDE−Example1

You will find the results on the screen in the terminal as well as some graphical output
in the ‘Results’ folder.

4.2.2 Building, making and running in the local folder

In case we have run first globally as previsously described, in each examples folder we
find an autobuild subfolder. If we now want to work locally (which is the usual way)
then we have to type ‘make’ in the autobuild folder:

autobui ld> make

In case we need to modify the Makefile, we need first to do:

autobui ld> cmake . .

For instance one reason to modify the Makefile could be to change to debug mode as
described in Section 4.3. Finally, go one folder back and run the object file.

In case you work and test out new things (modifiying the main.cc and localpde.h files
etc.), one command for instance in Example 9 is:

Example9> cd autobu i ld / && make && cd . . && . /DOpE−PDE−StatPDE−Example9

4.3 Changing from Release mode to Debug mode

In a specific example go into the autobuild folder and change therein:

cmake CMAKE BUILD TYPE=Release . .

to some other behavior:

Debug Release RelWithDebInfo MinSizeRel

Then type ‘make’ to build the executable file and go back into the parent folder and
execute the object file.

4.4 Creating new examples

Before being able to change and compile the new code, the user must follow some easy
steps in order to modify the information related to the old code. In this section we
explain how to modify such information using as model PDE/StatPDE/Example1.

1. New: in git from March 2017 In a first step, we copy Example1 and renamed it,
e.g., MyWonderfulFirstExample. After having reached the folder of the example
in question in the terminal, PDE/StatPDE in our case, we perform these operation
writing the following:
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cp -r Example1 MyWonderfulFirstExample

cd MyWonderfulFirstExample

2. Old: in the svn up to version 8.3 In a first step, we copy Example1 and re-
named it, e.g., MyWonderfulFirstExample. At the same time it is important to
remove the repository information that it is stored in the directory .svn/.
After having reached the folder of the example in question in the terminal, PDE/StatPDE
in our case, we perform these operation writing the following:

cp -r Example1 MyWonderfulFirstExample

cd MyWonderfulFirstExample

rm -rf .svn

cd Test

rm -rf .svn

Please note that removing the .svn sub-directories is important, as otherwise
your files may be replaced or changed during your next update. Also, if you can
submit information to the subversion repository you might accidentally overwrite
the original example, here Example1.

3. You will find a file CMakeLists.txt in the folder MyWonderfulFirstExample.
Open this file, in it you can find the line

SET(TARGET "DOpE-PDE-StatPDE-Example1")

the string DOpE-PDE-StatPDE-Example1 will be the name of the executable of your
program. Change it to something suitable, e.g.,

SET(TARGET "MyWonderfulFirstExample")

Moreover, this file contains the lines

SET(dope_dimension 2)

SET(deal_dimension 2)

which define the dimension of the domain for the control-variable (dope dimension)
and the PDE solution (deal dimension). If for your example one of these differs
from 2 adjust the number accordingly. This file will not need any further modifi-
cations.

4. Now, you are prepared to change any of the problem dependent data in information
in the files

main.cc, localpde.h, functionals.h, localfunctional.h, etc

If above you have changed the dimensions, make sure to adjust all files accordingly!
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5. The cmake system can - in principle be used ”in-source” to create the executable.
However, this may break some of the automated tests (later), so you are encour-
aged to proceed differently. To do this end proceed as follows in the directory
MyWonderfulFirstExample:

MyWonderfulFirstExample$ mkdir build

MyWonderfulFirstExample$ cd build

MyWonderfulFirstExample/build$ cmake -DCMAKE_BUILD_TYPE=Release ../

which will configure the build (if you want to debug it is useful to replace the string
Release with Debug). Once this is done, you can compile and run the code:

MyWonderfulFirstExample/build$ make

MyWonderfulFirstExample/build$ cd ..

MyWonderfulFirstExample$ ./MyWonderfulFirstExample

(Assuming that no errors occurred during the make call)

6. The Makefile in the directory is present only to preserve backward compatibility.
If you wish to use the automated build/test routines in DOpE lib, you need to make
sure that it its configured correctly. If you just want to use the cmake capabilities
you can safely ignore this passage.

Furthermore, if you have followed the instructions above, then no changes will be
needed.

If you have moved the directory to some other place, i.e., it is not in the same folder
as Example1, then open the Makefile in the directory MyWonderfulFirstExample

you will find the line

DOpE = ../../../../

which points to the root directory of your DOpE installation. Adjust the path to
match accordingly.

When working with cmake, the easiest option is to set the DOpElib environment
variable, so that it will be found be cmake (similar to Section 2.7):

export DOPE_DIR=path_to_DOpElib

or alternatively, passing directly a flag to cmake:

-DDOPE_DIR=path_to_DOpElib
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7. If you want to run automated tests on you program so that you can verify whether
your code is running as expected after updating the library you may want to update
the sub-directory Test as well, see also Chapter 7. Otherwise you may skip this
step.

Change to the Test sub-directory. And then modify the test-script to contain
the new name of the executable. Assuming you want to use Emacs, open the file
test.sh

PDE/StatPDE/Example1/Test> emacs test.sh

where, in our example you find the line

PROGRAM=../DOpE-PDE-StatPDE-Example1-2d-2d

if you made a copy of an other example the part DOpE-PDE-StatPDE-Example1-2d-2d
may differ. These lines need to be replaced with the new name of the executable,
i.e., for our given example

PROGRAM=../MyWonderfulFirstExample

8. Once you have finished and are sure that your example is running correctly and
you want to use the automated test scripts –see 3) above– You need to store new
test information to account for your changes.

To do so, change to the Test sub-directory and run the test:

./test.sh Test

Note that this should fail, otherwise you have not changed anything in the program,
or forgot part 3) of this description.

If it failed have a look into the file dope.log and see whether you like the output.
If you do not like it you may wish to update the file test.prm that takes care of
the parameters for the test run.

Once your satisfied with what you see in the log-file dope.log you need to store
that information using

./test.sh Store
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5.1 Stationary PDEs

5.1.1 Stationary Stokes Equations

General problem description

In this example we consider the stationary incompressible Stokes equation . Here, we use
the symmetric stress tensor which has a little consequence when using the do-nothing
outflow condition. In strong formulation we have

−1

2
∇ · (∇v +∇vT ) +∇p = f (5.1)

∇ · v = 0

on the domain Ω = [−6, 6] × [0, 2]. We split ∂Ω = ΓD ∪ Γout. The right hand side of
the channel is Γout on which we describe the free outflow condition, on the rest of the
boundary we prescribe Dirichlet values (An parabolic inflow on the left hand side and
zero on the upper and lower channel walls). We choose for simplicity f = 0.

As code verification, we evaluate two different types of functionals. First a point
functional measuring the x-velocity and a flux functional∫

Γout

v · n ds,

on the outflow boundary. Both a described in the functionals.h file as described below.

Program structure

In all examples, the whole program is split up into several files for the sake of readability.
These files are always denoted in the same way, so we only have to explain the general
structure in this first example, whereas in the following examples, we will only point out
differences to the current one. The content of the single files will be described in more
detail below.

If we do not use one of the standard grids given in the deal.II library, we can read
a grid from an input file. In our example, the domain Ω = [−6, 6] × [0, 2] is given in
the channel.inp file, where all nodes, elements and boundary lines are listed explicitly
and the boundary is divided into disjoint parts by attributing different colors to the
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boundary lines.

Certain parameters occurring during the solution process, e.g. error tolerances or the
maximum number of iterations in an iterative solution procedure, are fixed in a parame-
ter file called dope.prm. This parameter file comprises several subsections corresponding
to different solver components.

In the functionals.h file we declare classes for different scalar quantities of interest (de-
scribed mathematically as functionals) which we want to evaluate during the solution
process.

The localfunctional.h file is relevant only if we want to solve an optimal control prob-
lem. In this case, it contains the cost functional, whereas the file is not needed for the
forward solution of PDEs. We will get back to this later in the context of optimal control
problems.

All information about the PDE problem (in the optimal control case about the con-
straining PDE) is included in the localpde.h file. In a class called LocalPDE, we build
up the element equation, the element matrix and element right hand side as well as
the boundary equation, boundary matrix and boundary right hand side. Later on, the
integrator collects this local information and creates the global vectors and matrices.

The most important part of each example is the main.cc file which contains the int

main() function. Here we create objects of all classes described above and actually solve
the respective problem.

The functionals.h file

Here, we declare all quantities of interest (functionals), e.g. point values, drag, lift,
mean values of certain quantities over a subdomain etc.
Each of these functionals is declared as a class of its own, but in DOpElib all classes are
derived from a so-called FunctionalInterface class.
As already mentioned previously, in the current example we declare functionals for point
values of the velocity and for the flux at the outflow boundary of the channel.

The localpde.h file

The LocalPDE is derived from a PDEInterface class. It comprises several functions
which build up the element and boundary equations, matrices and right hand sides. The
weak formulation of problem (5.1) with f = 0 is

1

2
(∇v,∇ϕ)Ω +

1

2
(∇vT ,∇ϕ)Ω − (p,∇ · ϕ)Ω + (∇ · v, ψ)Ω − (n · ∇vT , φ)Γout = 0. (5.2)
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Remark 5.1.1. Note the additional term on Γout, which is a consequence of the use of
the symmetric stress tensor together with the free outflow condition.

This problem is vector valued, i.e. the velocity variable v has two components and the
pressure variable p is a scalar. For the implementation, we use a vector valued solution
variable with three components, where the distinction between velocity and pressure is
done by use of the deal.II FEValuesExtractors class.
Furthermore, in DOpElib we always interpret the problems in the context of a Newton
method. Usually, a PDE in its weak formulation is given as

a(u;ϕ) = f(ϕ).

The left hand side is implemented in the ElementEquation function, the right hand
side is implemented in the ElementRightHandSide function (which is unused in this
example, because f = 0).

Remark 5.1.2. The weak formulation might contain some terms on faces or (parts of) the
boundary. DOpE is able to handle these via BoundaryEquation, BoundaryRightHandSide
etc.. To keep things simple, we neglect these terms in this introduction.

To apply Newton’s method, this problem is linearized: on the left hand side, we have
the derivative of the (semilinear) form a(·; ·) with respect to the solution variable u, and
the right hand side is the residual of the weak formulation:

a′u(u;u+, ϕ) = −a(u;ϕ) + f(ϕ).

In the ElementMatrix function, we implement the following matrix A as representation
of the derivative on the left hand side:

A = (a′u(u;ϕi, ϕj))
N
j,i=1

with the number N of the degrees of freedom. Similarly, the ElementEquation contains
the vector

a = a(u;ϕi)
N
i=1,

and the ElementRightHandSide in the case f 6= 0 would contain a vector

f̃ = (f ;ϕi)
N
i=1.

The system of equations which is then actually solved is

Aũ+ = −a+ f̃ .

Because of the linearity of equation (5.2), there is almost no difference between the two
functions.

At this point, it is important to note that DOpE interprets any given problem as a
nonlinear one which is solved by Newton’s method; the special case of linear problems is
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included into this general framework.

The main.cc file

First of all, several header files have to be included that are needed during the solution
process. We divide these includes into blocks corresponding to DOpE headers, deal.II
headers, C++ headers and header files of the example itself (like the ones mentioned
above).
Furthermore, we define names for certain objects via typedef which act as abbreviations
in order to keep the code readable. In our case, these are OP, IDC, INTEGRATOR,

LINEARSOLVER, NLS, SSOLVER and STH.
In the int main() function, we first create a possibility to read the parameter values
from the dope.prm file. Then there are several standard steps for finite element codes
like

• definition of a triangulation and create a grid object (which we read from the
channel.inp file)

• creation of finite element objects for the state and the control and of quadrature
formula objects

and in addition, we

• create objects of the LocalPDE class and of the different functional classes declared
in the functionals.h file.

Remark 5.1.3. Up to now we have to create a pseudo time even for stationary problems.
The
MethodOfLines StateSpaceTimeHandler object (DOFH) which is needed for the initial-
ization of OP requires a vector in which timepoints are specified. However, this is again
merely a dummy variable, for we do not actually apply a time stepping method in the
stationary case. This will also be removed in future versions of DOpE.

Before we initialize the SSolver object and actually solve the problem, we have to set
the correct boundary conditions. Via the compmask vector, we ensure that the boundary
conditions are set only for the velocity components of our solution vector. We set
homogeneous Dirichlet values at the upper and lower boundaries of the channel. The
inflow is described by a parabolic profile at the left boundary (the corresponding function
class is declared in the myfunctions.cc file), whereas we do not prescribe anything at the
outflow boundary (so-called do-nothing condition).
The output of the program (the two functional values) is rather unspectacular; as the
problem is linear, the solution is computed within one Newton step.

35



5 Examples for PDE Solution

5.1.2 Laplace equation with periodic BC

General problem description

We solve the vector values Laplace equation on a quadratic domain Ω with a circular
hole in the middle, i.e. in strong formulation we look for u = (u1, u2) s.t.

−∇ · (∇u) =f in Ω.

We set zero Dirichlet values on the circular boundary in the middle of the domain and
periodic boundary conditions on the other parts of the boundary. We choose the flux
over the right hand side boundary as functional. We choose

f(x, y) =
(

cos
(
exp(10x)

)
y2x+ sin(y), cos

(
exp(10 ∗ y)

)
x2y + sin(x)

)
for the right hand side. As code verification, the mass flux on one boundary part is
evaluated.

Program description

This example show how to implement user defined DoF constraints. DOpElib has an
interface for this, namely UserDefinedDoFConstraints. In our case, we derive the class
PeriodicityConstraints, overwrite the method MakeStateDoFConstraints and give
an instance of this class to SpaceTimeHandler at hand:

PeriodicityConstraints<DOFHANDLER, DIM> constraints_mkr;

STH DOFH(triangulation, state_fe);

DOFH.SetUserDefinedDoFConstraints(constraints_mkr);

This is all it takes. We refer to myconstraintsmaker.h for the details of the implementa-
tion of the periodicity-constraints.
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5.1.3 Stationary Stokes Equations with hp-Elements

General problem description

In this example we consider the same setting as in subsection 5.1.1, the only difference
is that we want to employ the hp-Finite-Elements. So the equation we solve is still the
stationary incompressible Stokes equation . Here, we use the symmetric stress tensor
which has a little consequence when using the do-nothing outflow condition. In strong
formulation we have

−1

2
∇ · (∇v +∇vT ) +∇p = f (5.3)

∇ · v = 0

on the domain Ω = [−6, 6] × [0, 2]. We split ∂Ω = ΓD ∪ Γout. The right hand side of
the channel is Γout on which we describe the free outflow condition, on the rest of the
boundary we prescribe Dirichlet values (An parabolic inflow on the left hand side and
zero on the upper and lower channel walls). We choose for simplicity f = 0..

Adding hp-Elements

One sees by comparing the main.cc-file of this problem with the one of subsection 5.1.1
that the change to hp-Elements is really easy, so we will keep the description short. In
comparison to example 5.1.1 the localpde.h and functionals.h have not changed, but we
have one additional file, namely indexsetter.h, in which the class ActiveFEIndexSetter
is defined.

In the hp-framework we have a stack of finite elements (a hp::FECollection) given.
We assign each element of the triangulation an fe-index which determines which finite
element we use on this element. The ActiveFEIndexSetter class manages these indices,
see there for more information.

The changes in main.cc are also minimal and are highlighted in the source code.
Obviously, we use FECollection and QCollection as well as a different DoFHandler.

#define DOFHANDLER hp::DoFHandler

#define FE hp::FECollection

...

typedef hp::QCollection<DIM> QUADRATURE;

typedef hp::QCollection<DIM - 1> FACEQUADRATURE;

Apart from that we have only to tell the space time handler the distribution of the finite
element indices:

ActiveFEIndexSetter<2> indexsetter(pr);

STH DOFH(triangulation, state_fe_collection, indexsetter);
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5.1.4 Laplace Equation in 2D

General problem description

In this problem we solve the simple vector valued Laplace equation in 2d on the unit
square Ω = [0, 1]2, i.e. in strong formulation we look for u = (u1, u2) s.t.

−∆u =f in Ω.

We set zero Dirichlet values on ∂Γ and choose f = (1, 1). The classical example of a
PDE.

Remark 5.1.4 (Why this example?). Originally, DOpElib was designed for coupled and
nonlinear problems with possible PDE-based optimization extensions. Later, we decided
to add the most simplest PDE (the Laplace/Poisson equation) in order to demonstrate
how DOpE treats this well-known example. In addition, the first-time user might start
here to get a feeling for DOpElib and its capabilities.
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5.1.5 Adaptive Solution of Laplace Equation in 2D

General problem description

This example shows the use of the adaptive grid refinement and error estimation by the
DWR method (For a description of the method, see [4].) applied to the Laplace equation

−∆u = f in Ω

with the analytical solution

u = sin

(
π

x2 + y2

)
,

the corresponding right hand side f = −∆u and appropriate Dirichlet Conditions on
∂Ω, where the domain is given by

Ω = [−2, 2]2 \B0.5(0).

We want to estimate the error in the following functional of interest

J : H1(Ω) −→ R
u 7−→ 1

|Γ|
∫

Γ u dx

where Γ =
{

(x, y) ∈ R2
∣∣x = 0,−2 < y < 0.5

}
.

For this setting, we have the error representation

J(e) =
∑
K∈Th

{
(Rh, z − ψh)K + (rh, z − ψh)∂K

}
(5.4)

with the error e = u− uh, the Triangulation Th, the dual solution z, arbitrary function
φh ∈ Vh (the ansatz space) and the element- and edge-residuals:

Rh
∣∣
K

= f + ∆uh (5.5)

resp.

rh
∣∣
Σ

=

{
1
2 [∂nuh], if Σ ⊂ ∂K \ ∂Ω,

0, if Σ ⊂ ∂Ω.
(5.6)

It holds J(u) ≈ 0.441956231972232.

Program description

In this section we want to focus on what you have to do if you want to enhance your
existing code to use the DWR method.

First, additionally to all the things one has to do when just solving the equation, we
have to include the file
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higher_order_dwrc.h

As we approximate the so called ’weights’ z − φh in the error representation by a
patch-wise higher order interpolation of zh (the computed dual solution), we have to
enforce patch-wise refinement of the grid by giving the flag

Triangulation<2>::MeshSmoothing::patch_level_1

to the triangulation.
To be able to solve the adjoint equation for the error estimation one needs to implement

some methods regarding the equation as well es the functional of interest:

• In pdeinterface.h

– ElementEquation_U: Weak form of the adjoint equation.

– ElementMatrix_T: The FE matrix for the adjoint problem.

– FaceEquation_U: This one is needed in this case here because we have a
functional of interest that lives on faces.

• functionalinterface.h

– FaceValue_U: This is the right hand side of the adjoint equation.

During the evaluation of (5.4), the following methods are needed

• StrongElementResidual: The element residual, see (5.5).

• StrongFaceResidual: The terms in (5.4) that lies in the interior (i.e. the jumps).

• StrongBoundaryResidual:The terms in (5.4) that lies on the boundary (There are
none in this case).

Note that in the above three functions we always apply the method ResidualModifier

both to the residual as well as to the jumps on the faces. This is done to assert that we
can apply both a DWR-error estimator where the residual should be multiplied with the
computed weights (then this function does not do anything) as well as Residual Type
error estimator for the L2 or H1 norm where we need to calculate element wise norms of
the residual and the jumps. Then this function calculates the appropriate local terms,
e.g., the square of the residual scaled with appropriate powers of the local mesh size.

After this, we tell the problem which functional we want to use for the error estimation,
this is done via

P.SetFunctionalForErrorEstimation(LFF.GetName())

where P is of type PDEProblemContainer and LFF is the desired functional of interest.
The next thing we need is an object of the type

HigherOrderDWRContainer
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This container takes care of the computation of the weights.
To build this, we need the following:

• DOFH_higher_order: With some higher order Finite Elements and the already
defined triangulation, we build this SpaceTimeHandler. This is needed because
we want to use the patch-wise higher order interpolation of the weights.

• idc_high: A IntegratorDataContainer in which we put some (face)quadrature
formulas for the evaluation of the error Identity.

• A string which indicates how we want to store the weight-vectors (here: "fullmem").

• pr: The ParameterReader which we have already defined.

• An enum of type EETerms that tells the container, which error terms we want to
compute (primal error indicators vs. dual error indicators, see [4]).

The last preparation step is now to initialize the DWRDataContainer with the problem
in use:

solver.InitializeHigherOrderDWRC(dwrc);

Succeeding the solution of the state equation

solver.ComputeReducedFunctionals();

we compute the error indicators by calling

solver.ComputeRefinementIndicators(dwrc);

We can now get the error indicators out of dwrc by

dwrc.GetErrorIndicators()[0];

With these indicators1, we are now able to refine our grid adaptively (there are several
mesh adaption strategies implemented, like ’RefineOptimized’, ’RefineFixedNumber’ or
’RefineFixedFraction’)

DOFH.RefineSpace(RefineOptimized(error_ind));

1In contrast to DOpElib 3.0 and earlier, GetErrorIndicators() already returns non-negative values, so
no additional manipulations are needed. However, note that the values of GetError() have been
obtained by summing over the signed indices, hence the value of GetError() can be smaller than the
sum of the ErrorIndicators.

41



5 Examples for PDE Solution

5.1.6 Laplace Equation in 3D

General problem description

In this problem we solve the simple vector valued Laplace equation in 3d on the unit
square Ω = [0, 1]3, i.e. in strong formulation we look for u = (u1, u2, u3) s.t.

−∆u =f in Ω.

We set zero Dirichlet values on ∂Γ and choose f = (1, 1, 1).

Program description

The PDE is discretized with Q3-elements on a series of locally refined grids (we use the
KellyErrorEstimator). The algebraic equations are solved with different iterative lin-
ear solvers acting on different vector and matrix-structures (i.e. we use dealii::BlockVector
and dealii::Vector plus the appropriate matrix classes).

To switch the linear solver is pretty easy since the newton solver has a template for
the linear solver. Thus changing this template is all that is required.

To change the structure of the vectors and matrices involves also only the change of
some template parameters. Our example programs are mostly build such that only a
change of some typedefs is required, i.e. one has to interchange the lines

typedef SparseMatrix<double> MATRIX;

typedef SparsityPattern SPARSITYPATTERN;

typedef Vector<double> VECTOR;

with

typedef BlockSparseMatrix<double> MATRIX;

typedef BlockSparsityPattern SPARSITYPATTERN;

typedef BlockVector<double> VECTOR;

to switch between the block and non-block structures.
After solving the equation, we want to apply local mesh refinement. So first we

extract with the help of the SolutionExatractr-class the vector solution representing
the finite element solution

SolutionExtractor<SSolver1, VECTORBLOCK> a1(solver1);

const StateVector<VECTORBLOCK> &gu1 = a1.GetU();

solution = gu1.GetSpacialVector();

With this vector we estimate the error via KellyErrorEstimator and get a vector
holding the estimated error per element. After choosing a refinement criterion (see
refinementcontainer.h, we opt here for refining the top 20% of the elements), we give
the SpaceTimeHandler an object of type RefinementContainer which holds all the
information needed for the local mesh refinement. This is done via the RefineSpace

method.
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DOFH1.RefineSpace(

RefineFixedNumber(estimated_error_per_element, 0.2, 0.0));

This method transfers our solution onto the new mesh. The transferred solution is then
taken as the starting guess of the newton method in the next solution cycle. This is
especially helpful for nonlinear problems.
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5.1.7 Stationary Elasticity Benchmark

General problem description

In this example we consider the following benchmark problem from elasticity theory:

(σ(u), ε(ϕ)) = (g, ϕ)ΓN
. (5.7)

Here Ω̃ is a quadratic domain with side length 200 mm, where a circular hole with radius
10 mm around the center is cut out. Using symmetries of the domain, we restrict our
actual computational domain Ω to the upper left quarter of Ω̃.
In the above equation, ε(v) := 1

2(∇v +∇vT ) is the symmetric strain tensor, and

σ(v) := 2µε(v)D + ρ tr(ε(v))I = 2µε(v) + λtr(ε(v))I,

denotes the symmetric stress tensor. Here τD is the deviatoric part of a tensor τ , in two
dimensions defined as

τD := τ − 1

2
tr(τ)I,

and the parameters µ and ρ are chosen as µ = 80193.800283 resp. ρ = (µ + λ) =
190937.589172. We notice that µ and λ denote the usual Lamé parameters.
The corner points of our computational domain are in anticlockwise order: (0, 0), (90, 0),
(100, 10), (100, 100) and (0, 100). We prescribe homogeneous Dirichlet boundary con-
ditions in y-direction between (0, 0) and (90, 0) (lower boundary part), homogeneous
Dirichlet boundary conditions in x-direction between (100, 10) and (100, 100) (right
boundary part), and we interpret the right hand side of equation (1) with g = 450
as a boundary condition between (0, 100) and (100, 100) (upper boundary part).
The goal of our computations is to match the following functional reference values taken
from E. Stein (editor), Error-controlled Adaptive Finite Elements in Solid Mechanics,
Wiley (2003), pp. 386 - 387 :

Functional u1 at (90, 0) σ22 at (90, 0) u2 at (100, 100)

Reference value 0.021290 1388.732343 0.20951

Functional u1 at (0, 100)
∫ (0,100)

(100,100) u2

Reference value 0.076758 20.40344

Program description

From the previous examples we know how to read a grid from an .inp file. The grid of
our current example comes from the above mentioned benchmark problem.
Apart from different point values of derivatives of the solution, we want to evaluate an
integral over part of the boundary. This is newly implemented in functionals.h.
In principle, everything is clear from the preceding examples. We refine the grid glob-
ally instead of using an error estimator for local refinement. The output of the program
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reflects again the linearity of the problem (only one Newton step is needed for solution).
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5.1.8 Stationary Plasticity Benchmark

General problem description

Similar to the previous example, we consider the following benchmark problem from
plasticity theory:

(Π(σ(u)), ε(ϕ)) = (g, ϕ)ΓN
. (5.8)

Here Ω̃ is again the quadratic domain with a circular hole around the center cut out.
Again, we restrict our actual computational domain Ω to the upper left quarter of Ω̃ for
reasons of symmetry.
We use the symmetric strain tensor ε(v) := 1

2(∇v + ∇vT ), and the symmetric stress
tensor σ is defined as

σ(v) := 2µε(v)D + ρ tr(ε(v))I = 2µε(v) + λtr(ε(v))I,

where τD is the deviatoric part of a tensor τ , in two dimensions defined as

τD := τ − 1

2
tr(τ)I.

Furthermore, the (standard) Lamé parameters are denoted by µ and λ and which are
more conveniently (here and in the code) expressed through ρ = µ+ λ and κ = 2µ+ λ.
The main difference with respect to the elastic case is the projection operator Π in
equation (1). It is defined as follows:

Π(τ) =

{
τ |τD| ≤ σ0

σ0|τD|−1τD + 1
2 tr(τ)I |τD| > σ0

In our computations, we choose σ0 =
√

2
3 · 450, and the above parameters µ, λ and ρ as

µ = 80193.800283, λ = 110743.788889, and ρ = 190937.589172, respectively. The corner
points of our computational domain are the same as before, and the boundary conditions
are not altered, either.
The goal of our computations is to detect a subdomain in Ω where plastic behavior
occurs (compare E. Stein (editor), Error-controlled Adaptive Finite Elements in Solid
Mechanics, Wiley (2003), pp. 386 - 389 ). This subdomain depends on the right hand
side g in equation (1) which we write as g = λ · p with p = 100 and λ ∈ [1.5; 4.5].

Program description

The code of the current example is nearly identical to the code of the previous one. The
only difference worth mentioning is the change of the equations which leads to different
implementations of the ElementEquation, ElementMatrix and BoundaryEquations

functions in localpde.h.
Furthermore, the elasticity equations solved in the last example are linear, whereas the
plasticity equations are nonlinear; this difference is evident also from the output (here,
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we need several Newton steps until convergence).
The functionals that appear in the output yield additional information and are not re-
quired in the above problem setting. The subdomain with plastic behavior we want to
detect can be visualized from the .vtk files written to the Results/Mesh subfolders.
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5.1.9 Stationary FSI with Stokes and INH Material

General problem description

In this example we consider a simple stationary FSI problem. The fluid is given as
an incompressible Newtonian fluid modeled by the Stokes equation. Here, we use the
symmetric stress tensor which has a little consequence when using the do-nothing out-
flow condition, see also section 5.1.1. The flow is driven by non-homogeneous Dirichlet
condition on the left boundary.

The computation domain is Ω = [−6, 6] × [0, 2] and we choose for simplicity f = 0.
We add in the subdomain Ωs = [0, 2]× [0, 1] a solid obstacle. In this solid we prescribe
an incompressible neo-Hookean material law.

The fluid reads:

Problem 5.1.5 (Variational fluid problem, Eulerian framework). Find {vf , pf} ∈ {vDf +
V } × Lf , such that,

(σf ,∇φv)Ωf
= 〈nf · gσs , φv〉Γi ∀φv ∈ Vf ,

(div vf , φ
p)Ωf

= 0 ∀φp ∈ Lf .

The Cauchy stress tensor σf is given by

σf := −pfI + ρfνf (∇vf +∇vTf ), (5.9)

with the fluid’s density ρf and the kinematic viscosity νf . By nf we denote the outer
normal vector on Γi and by gσf is a function which describes forces acting on the interface.
These will be specified in the context of fluid-structure interaction models.

We define:
T̂ := id + û, F̂ := I + ∇̂û, Ĵ := det(I + ∇̂û).

The structure equations are given by incompressible neo-Hookean material

Problem 5.1.6 (Incompressible neo-Hookean Model (Lagrangian)).

(Ĵsσ̂sF̂
−T
s , ∇̂φ̂v)Ω̂s

= 〈Ĵsn̂s · ĝσs F̂−Ts , φ̂v〉Γ̂i
∀φ̂v ∈ V̂s

(v̂s, φ̂
u)Ω̂s

= 0 ∀φ̂u ∈ V̂s,

(Ĵ − 1, φ̂p)Ω̂s
= 0 ∀φ̂p ∈ L̂s,

where ρs is the solid’s density, µs the Lamé coefficient, n̂s the outer normal vector at
Γ̂i, ĝ

σ
s the force on the interface and with

σ̂s := −p̂sI + µs(F̂sF̂
T
s − I).

Remark 5.1.7. At our developer meeting on Apr 13, 2017, we also added a simplified
STVK material for testing purposes. This STVK material is implemented in a different
header file (see also further comments below).
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The resulting FSI problem is then given by:

Problem 5.1.8 (Stationary Fluid-Structure Interaction (ALE)).

(Ĵ σ̂f F̂
−T , ∇̂φ̂v)Ω̂f

+ (Ĵ σ̂sF̂
−T , ∇̂φ̂v)Ω̂s

= 0 ∀φ̂v ∈ V̂ ,

(v̂, φ̂u)Ω̂s
+ (αu∇̂û, ∇̂φ̂u)Ω̂f

= 0 ∀φ̂u ∈ V̂ ,

(d̂iv (Ĵ F̂−1v̂f ), φ̂p)Ω̂f
+ (Ĵ − 1, φ̂p)Ω̂s

= 0 ∀φ̂p ∈ L̂,

Remark 5.1.9. In the problems above and the code, we implement the term

(v̂s, φ̂
u),

although this is not physically necessary. It is first for computational convenience in
order to extend the fluid velocity variable to the whole domain. This could be resolved
by using the FE Nothing element. Second, using v̂s here makes it easier to understand
the nonstationary FSI problem.

Program description

In the localpde.h file, all functions of the LocalPDE class have to be adjusted to the current
FSI problem. This only makes the equations and matrices a little more complicated,
and our solution vector now consists of five components (two velocity components of
the fluid, the pressure component, and two additional displacement components for the
structure variables). Otherwise, everything is analogous to the former example.
In the main.cc we only have to add two components to the compmask vector and prescribe
boundary conditions for the structure variables. Apart from that, we define objects for
the same classes as before that are even named equally and use the same solvers.
Again, the solution is reached within one Newton step, and all we see from the program
output is the values of the functionals.

We also demonstrate another very convenient feature. Since we have two different
material laws (INH and simplified STVK), we do not implement them together in one
localpde.h file by using if-conditions etc. But we implement them separately in two
different *.h files, namely

l o ca lp de . h
l o c a l p d e s t v k m a t e r i a l . h

In the main.cc function we can now simply comment or uncomment the respective file
we want to work with. This allows us to keep a clean file for a running example and
experiment in other files (possibly more than 2) and by just changing two lines in the
main.cc in order to change the equations.
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5.1.10 Stationary FSI with Navier-Stokes and STVK Material

General problem description

This example is an extension the previous one. We solve an stationary FSI problem either
with INH material (see Problem definition before) or St. Venant Kirchhoff material
STVK:

Problem 5.1.10 (Compressible Saint Venant-Kirchhoff, Lagrangian framework). Find
{ûs} ∈ {ûDs + V̂ }, such that

(Ĵsσ̂s(ûs)F̂
−T
s , ∇̂φ̂v)Ω̂s

= 〈Ĵsn̂s · ĝσs F̂−Ts , φ̂v〉Γ̂i
∀φ̂v ∈ V̂s (5.10)

where ρs is the density of the structure, µs and λs the Lamé coefficients, n̂s the outer
normal vector at Γ̂i, ĝ

σ
s some forces on the interface. The properties of the STVK

material is specified by the constitutive law

σ̂s(ûs) := Ĵ−1F̂ (λs(trÊ)I + 2µsÊ)F̂−T . (5.11)

Remark 5.1.11. In the code, we also implement

(v̂s, φ̂),

although this is not physically necessary. It is first for computational convenience in
order to extend the fluid velocity variable to the whole domain. This could be resolved
by using the FE Nothing element. Second, using v̂s here makes it easier to understand
the nonstationary FSI problem. The same holds for the (artificial) pressure variable in
the STVK case.

Often, the elasticity properties of structure materials is characterized by Poisson’s ratio
νs (νs <

1
2 for compressible materials) and the Young modulus E . The relationship to

the Lamé coefficients µs and λs is given by:

νs =
λs

2(λs + µs)
, E =

µs(λs + 2µs)

(λs + µs)
. (5.12)

On fluid side, we extend the problem from Stokes flow to stationary Navier-Stokes flow
considering the convection term

v · ∇v

which reads in transformed form [40]

(Ĵρf F̂
−1v̂ · ∇̂v̂, φ̂v)Ω̂f

.

The whole equation system is solved on the benchmark configuration domain. For
details on parameters and geometry, we refer to the numerical FSI benchmark proposal
from Hron and Turek [2006].

The code is established by computing the stationary FSI benchmark example FSI 1
with the following values of interest: x-displacement, y-displacement, drag, and lift.
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Program description

Compared to the previous Example 5.1.10, there are some differences which we will
briefly discuss in the following. First of all, the problem is nonlinear in contrast to
the former ones. We work on a different domain (given in the benchfst0100tw.inp file),
namely a channel with a cylinder put at half height near the inflow boundary; further
.inp files yield the possibility to vary the domain.
Furthermore, in the dope.prm parameter file there are two additional subsections which
are added only for the current problem. From the denotation of these subsections one
can immediately see where in the code the parameters are used.
As we want to compute certain benchmark quantities, we have to regard corresponding
functionals in the functionals.h file. The pressure at a point as well as the displacement
in x- and y-directions are point values; furthermore we implement the drag and lift func-
tionals (for which we need the additionally defined problem parameters).
As before, we build up the element and boundary equations and matrices in the localpde.h
file. Apart from using the additionally defined problem parameters and modeling com-
pressible STVK material instead of INH material (which leads to changes in the weak
formulation of the equations), there are no major differences to the corresponding file in
the last example.
In the main.cc file, we have to include additional header files from the deal.II library
concerning error estimation and grid refinement. Further on, everything is pretty much
the same as in the last example, but we have to use the SetBoundaryFunctionalColors
function of the PDEProblemContainer class to be able to compute drag and lift in the
respective functional classes in functionals.h.
The main innovation in contrast to the preceding examples is the refinement of the grid
combined with a simple error estimator given in the deal.II KellyErrorEstimator class.
If we look at the output of our program, everything is computed several times (once on
each refinement level). Furthermore, we see that several Newton steps are needed on
each refinement level; this is due to the nonlinearity of the current problem.

Finally this example demonstrates how to use the direct solvers provided by Trilinos.
This is done by the line

typedef TrilinosDirectLinearSolverWithMatrix

<SPARSITYPATTERN, MATRIX, VECTOR> LINEARSOLVER;

interfacing to the Trilinos library. The selection of the precise direct solver can be done
using the parameter file.
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5.1.11 Usage of Higher Order Mappings: Approximation of π

General problem description

This example shows the use higher order mappings in DOpElib. To this end, we solve a
simple Laplace equation

−∆u = −4 in Ω

with the analytical solution

u = x2 + y2,

and the Dirichlet Conditions on u = 1, where the domain is given by a circle with radius
1 and the center located in the origin.

We compute the L2-norm of the error and, additionally, we evaluate a functional
which does not depend on the solution at all. We integrate the constant 1

2 once over the
boundary of the domain. The result is an approximation of π.

All this is standard and would not justify an additional example, however we solve the
equation and the functional not one but two times. First with the standard Q1-mapping,
the second time we use a higher order mapping. The exact order can be determined by
the parameter file, the preset is Q2-mapping. At the end, we gather the errors and
convergence rates over some refinement cycles in a nice table and notice the higher order
of convergence for the higher order mapping solutions. This is due to the fact that we
can approximate the circular boundary much better by a quadratic mapping.

Program description

In this section we want to focus on what you have to do if you want to enhance your
existing code to use higher order mappings, which is actually pretty simple.

You have to include the file

mapping_wrapper.h

and create a mapping of the desired order by

DOpEWrapper::Mapping<dim, DOFHANDLER> mapping(order_of_mapping);

The last step is to give the mapping to the DoFHandler:

MethodOfLines_StateSpaceTimeHandler<FE, DOFHANDLER, SPARSITYPATTERN,VECTOR, 2>

DOFH(triangulation, mapping, state_fe);

The rest of the program is as usual.
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5.1.12 Use of Raviart-Thomas element; Special linear solvers

General problem description

This example shows the use of the Raviart-Thomas (RT) element in DOpElib. The
example is taken from dealii step-20 and shows how this step can be implemented in
DOpElib. The vector valued Laplace equation is solved in the mixed formulation.

Most things are identical to all the other programs. However there is a subtle dif-
ference in localpde.h: The block component vector mapping blocks to components
has 3 entries, but since the first finite element is non-primitive we need to assign both
components (0 and 1) to the same block.

The second difference is that we have to initialize the mapping explicitly. This is due
to the fact that the default

DOpEWrapper::Mapping<DIM,DOFHANDLER> mapping(1,false);

is not working with the RT-element and leads to elements on which the divergence is
NaN.

An additional feature of this example is that for the solution of the PDE in mixed
form we are using the Schur complement solver provided in dealii step-20. Hence
this example shows how simple it is to use self-made linear solvers within the DOpElib

framework.
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5.1.13 Discontinuous Galerkin

General problem description

Within this example, we demonstrate how to use the dG (discontinuous Galerkin)
method for the solution of a transport equation. The example corresponds to the dealii
step-12. Here we want to solve the transport equation

∇ · (βu) = 0 in Ω,

u = g on Γ− := {x ∈ ∂Ω |β(x) · n(x) < 0}.

Where n is the outward unit normal, Ω = (0, 1)2 and

β(x) =
1

|x|

(
−x2

x1

)
.

For the numerical solution, as in dealii step 12, we use the upwind discontinuous
Galerkin . Hence we solve the problem of finding uh such that

−
∑
T∈Th

(uhβ · ∇vh)T +
∑
F∈Fh

(u−h , [β · nvh])F + (uh, β · nvh)Γ+ = −(g, β · nvh)Γ−

where Γ+ = {x ∈ ∂Ω |β(x) ·n(x) > 0}, Th and Fh denote the elements and interior faces
of the mesh, respectively. The jump is defined as

[β · nvh] = (v+ − v−)β · n+

where the superscript + or − denotes the dependence on the upstream + or downstream
− element.

Implementational Details

Within this program, we need to make use of the additional Face* and Interface*

methods as given in the PDEInterface class. The Face* methods define all integrals on
F in which the element interacts with it self. The Interface* methods are used for the
coupling between the two neighboring elements over the given face.

The program requires the following changes in contrast to the prior examples:

main.cc We utilize Block Preconditioners for the solution of the resulting system. To
this end we included the line

typedef DOpEWrapper::PreconditionBlockSSOR_Wrapper<MATRIX,4>

PRECONDITIONERSSOR;

In contrast to all other preconditioners, we need to specify the block size. This number
needs to correspond to the number of unknowns per elements; here 4 since we use Q1-
elements. Note that this works for dG elements only.
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The next important change is that we now not only use a discontinuous element, but
we will need to assemble terms on faces between elements that couple the unknowns in
the different elements together. For this, the matrix needs to have the corresponding
non-zero entries specified in the sparsity pattern. To do this, the space time handler has
an argument bool flux pattern in the constructor that needs to be set to true, i.e.,
we instantiate as follows:

STH DOFH(triangulation, state_fe, true);

Finally, the integration will utilize a special function to be declared in the LocalPDE,
hence all objects must use the LocalPDE and not the PDEInterface. To make sure that
this is the case, the PDEProblemContainer needs to be initialized with the following
arguments

typedef PDEProblemContainer<LocalPDE<EDC, FDC, DOFHANDLER, VECTOR, DIM>,

SimpleDirichletData<VECTOR, DIM>, SPARSITYPATTERN, VECTOR, DIM> OP;

localpde.h In order to integrate the PDE above, we have to deal with one term that
has not been considered before ∑

F∈Fh

(u−h , [β · nvh])F

Since internally all terms by sums over elements we split this term into contributions
on the element edges ∂K. On an element K a face F , with outward normal n connects
to another element K ′, depending on the sign of β · n we have two cases. β · n > 0 in
which case u−h = uh or β · n < 0 in which case u−h = u∗h = uh|K′ , i.e. the value from the
neighbor. The jump always contains the values vh and v∗h.

Let now β ·n > 0. Then we assemble the contributions coming only from this element
in the FaceEquation (and FaceMatrix), i.e.,

(uh, β · nvh)F

The other part of the jump, namely

−(uh, β · nv∗h)F

is not assembled here, since the test functions do not live on the selected element K.
These contributions will be assembled once the element K ′ is selected (and hence on the
same face β · n < 0. Once this is the case, i.e. β · n < 0, we assemble the other part of
the jump, which is now

(u∗h, β · nvh)F .

This is done in the InterfaceEquation (and InterfaceMatrix) since we couple un-
knowns for the neighboring element K∗ (the values of u∗h) with those on K (the values
of vh). Note that in contrast to the view on the element with β · n > 0 the term has
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apparently switched signs. This is no typo, but due to the fact, that the outward normal
has changed direction.

The precise assembly is analogous to the usual integrals, hence we don’t provide more
details. The only thing different in the InterfaceEquation and InterfaceMatrix we
need to access the values on the element on the other side of the face. To this end,
all Get* functions used, such as GetFEFaceValuesState, have a counterpart GetNbr*,
i.e., GetNbrFEFaceValuesState, to access the corresponding values on the neighboring
element.

Naturally the two functions

bool HasFaces() const;

bool HasInterfaces() const;

need to return true.
A last and important change is that we now need to implement the method

template<typename ELEMENTITERATOR>

bool AtInterface(ELEMENTITERATOR& element, unsigned int face) const

{

if (element[0]->neighbor_index(face) != -1)

return true;

return false;

}

that returns true whenever we are on an interior face and false otherwise.
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5.1.14 PDEs on Networks

General problem description

Within this example, we demonstrate how to solve a system of PDEs on a network. The
example contains the trivial network consisting of the two lines

(0, 50) (50, 100)

and we solve the PDEs

∂xw = 1 w(0) = 10,

−∂xp = −1 p(100) = 1.

together with the coupling conditions

w−(50) = w+(50), p−(50) = p+(50).

The functionals evaluate the L1-error between the computed discrete solutions and the
known exact solution for this problem.

Implementational Details

In order to realize the coupling across multiple domains we no longer use a standard
dealii::DoFHandler but rather one for each domain. Internally, the data is stored
in a dealii::BlockVector, thus only a standard dealii::Vector may be used on
each domain, otherwise the linker fails since, e.g., no implementation of the needed
dealii::BlockVector<BlockVector> exists. The first blocks contain each the vari-
ables for one of the PDEs on the given domains. The last block stores the boundary
values for each of the given domains, first all ‘left’ conditions than all ‘right’ conditions
(corresponding to the boundary id 0 and 1 respectively).

main.cc In the main, not much is changing, for many of the already known classes
there is an update given in the namespace DOpE::Networks which internally handle the
correct selection of subdomains. Further, we have to initialize triangulations for each
of the domains and provide a description of the network topology given in the class
LocalNetwork.

localpde.h In this class, as always we implement the local element and boundary inte-
grals (this is unchanged), and the same object is used on all subdomains, hence if different
PDEs need to be coupled these need to be selected, e.g., by setting the material id

accordingly. The only difference is that now, we have to access the externally given
boundary values from the other domains (these values are now called fluxes). This can
be done by calling GetFluxValues from the Networks::Network FaceDataContainer.

For the network, there are some new methods to be implemented.
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BoundaryEquation BV contains the derivative of the boundary equation with respect
to the given flux variables and store them according to the residual line in which they
appear.
BoundaryMatrix BV implements the corresponding matrix. Notice, that it is implicitly

assumed that the boundary values depend linearly on the fluxes!
OutflowValues implements a selection routine to specify which of the fluxes are ‘Out-

flowValues’, i.e., those values that are not considered in the PDE and thus the corre-
sponding flux must be adjusted in order to match the given outflow. In addition, this
method must set Boolean flags indicating if a value is to be considered as outflow.
OutflowMatrix the matrix corresponding to the previous function. Again, it is as-

sumed that the OutflowValues depend linearly on the solution variable.
PipeCouplingResidual and CouplingMatrix just pass arguments to the network.

localnetwork.h This class implements the topology information needed on the network.
In particular:
PipeCouplingResidual needs to evaluate the residual in the coupling conditions.

These conditions are always NPipes outflow conditions and an additional NPipes cou-
pling conditions between the different flux variables, i.e., the boundary values for w and p
and the continuity condition at the point 50. It is assumed, again, that these conditions
are (affine)-linear.
CouplingMatrix calculates the matrix corresponding to the coupling conditions.
GetFluxSparsityPattern is needed to calculate the sparsity pattern for the coupling

(2 ·NPipes ·NComp× 2 ·NPipes ·NComp) matrix.
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5.1.15 Parallel Solve for Laplace

General problem description

The setup of this example is the same as Example 5.1.6, i.e. we solve a vector-valued
Laplace equation in 3d. The major difference is the use of MPI to parallelize and speedup
our program.

Program description

MPI based parallelization in DOpE happens mainly behind the scenes. For simple
examples like this one, there are only few changes required in the user provided source
code.

The first one is to use data structures that allow for MPI based parallelization. This
is not supported by the previously used dealii::Vector and dealii::SparseMatrix struc-
tures, but we have to switch to the corresponding vectors in the dealii::TrilinosWrappers
namespace.

using MATRIXBLOCK = TrilinosWrappers::BlockSparseMatrix;

using SPARSITYPATTERNBLOCK = TrilinosWrappers::BlockSparsityPattern;

using VECTORBLOCK = TrilinosWrappers::MPI::BlockVector;

Remark 5.1.12. using

is just the more modern version of

typedef

MPI needs to be initialized, this is done via the line

dealii::Utilities::MPI::MPI_InitFinalize mpi(argc, argv);

which is a deal.II class handling the initialization for us. This object has to be created
before any call to a MPI function, hence it is advised to put it right at the beginning
of the main function. MPI also needs to be ”finalized”, i.e. closed explicitly. This is
included in the previous class and happens when the MPI InitFinalize object gets out
of scope.

This are already all the changes required to run our application in parallel. In order
to run the application with MPI, we have to call it via

mpirun -np 4 application

This example call spawns 4 instances of our application, which then proceed to jointly
solve our problem. The number of cores used can be controlled via the ”-np x” option.
”-np 1” runs the application without MPI parallelization.

Remark 5.1.13. Depending on your system, the exact command might be different, i.e.
”srun -n 4 application” for slurm based systems.

Remark 5.1.14. Note that on standard personal computers you may not actually see any
speedup. This is due to limitations of the memory bandwidth.

59



5 Examples for PDE Solution

5.1.16 Obstacle Problem

General problem description

Within this example, we solve the obstacle problem of finding u ∈ K solving

(∇u,∇(φ− u)) ≥ (f, φ− u) ∀φ ∈ K (5.13)

where
K = {φ ∈ H1

0 (Ω) |φ ≥ χ a.e. in Ω}

on Ω = (−1, 1)2 with

χ(x) = dist(x, ∂Ω)− 2 dist
(
x,Ω \ (−1

4 ,
1
4)2
)
− 1

5

and f = −5 as inspired by [30, Example 7.5]. To handle the variational inequality ,
we introduce a Lagrange multiplier λ such that (5.13) is equivalent to finding u and λ
solving

(∇u,∇φ)− (f, φ)− (λ, φ) = 0 ∀φ ∈ H1
0 (Ω),

λ ≥ 0,

u− χ ≥ 0,

(λ, u− χ) = 0.

(5.14)

Then, we replace the last three inequalities by a complementarity function, i.e., we notice
that for any c > 0

x−max(0, x− cy) = 0 ⇔ x ≥ 0, y ≥ 0, xy = 0,

and obtain the formulation

(∇u,∇φ)− (f, φ)− (λ, φ) = 0 ∀φ ∈ H1
0 (Ω),

λ−max(0, λ− c(u− χ)) = 0.
(5.15)

For its discretization, we let χh = Ihχ be the Q1 interpolation of the obstacle and take
uh ∈ Q1. For the multiplier λ, we utilize the dual basis of Q1 to define Q∗1, i.e., if φi are
the nodal basis functions for Q1, then we define the basis ψi of Q∗1 from

(φi, ψj) = δij =

{
1 i = j,

0 otherwise.

This has the advantage, that the first equation in (5.15) just gets

(∇u,∇φi)− (f, φi)− λi = 0 ∀φi nodal basis function of Q1.

The second equation, we enforce in the corresponding vertices xi to φi, only, and get

λi −max(0, λi − c(u(xi)− χ(xi))) = 0.
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The advantage of this formulation is that we don’t need to actually evaluate the basis
functions ψi, since we only need the values of λi which we simply store in a Q1 Finite
Element at the vertices since then

λi = λ(xi)

and we use a Gauss-Lobatto quadrature to actually evaluate the functions at the ver-
tices. The ugly part is that we need to assert that we never evaluate λ at a non-vertex
quadrature point.

Now, when running over the mesh, we will have each vertex xi in multiple elements,
thus counting its contribution more than once. To normalize it by the number of times
it is counted, we need to divide by this number of elements. We can get it from the
ElementDataContainer using GetNNeighbourElementsOfVertex. To use it we need to
have the function HasVertices in LocalPDE to return true, so that the information is
generated.

Further, in this example we show a residual based error estimator for the obstacle
problem, as given in [38]; see also [28, 21] for the original idea for parabolic VIs and
the analysis for a Signorini problem. In principle this is similar to the calculations
needed in Example 5.1.5, i.e., defining the Strong*Residual terms in the LocalPDE

class. However, for the estimate of the obstacle we need special data. First, for a
given vertex xi, we need to know if xi is a full contact node, meaning that u = χ on
ωi = ∪T |xi∈TT the patch around v. Further, we need to have |ωi| =

∫
ωi
φi dx for all

vertices to correctly scale the complementarity residual. Unfortunately, both data are
non-local, i.e., we can not compute it on any given T alone.

However, we can compute these values if we have one additional integration over the
domain. I.e. to get |ωi| we simply define a function ω ∈ Q1 by ω(v) = ωv which we can
calculate by computing the nodal vector corresponding to the functional∫

Ω
φ dx.

In a similar manner, we can calculate if a vertex is in full contact by adding 1 to a nodal
vector whenever its support is contained in a full contact element, and rescaling with
the number of elements adjacent to the corresponding node.

To execute these computations the ObstacleResidualErrorContainer has a function
NPrecomputedNodalValues returning 1 since we can compute both vectors in a single in-
tegration. The actual integration is then implemented in LocalPDE in the *AuxRhs which
will be evaluated prior to error estimation. The results are then accessible via the vector
aux errror 0 from the *DataContainers in the evaluation of the Strong*Residual.

Note, if more than one precomputation is requested the results will be accessible in
aux error i for an appropriate index i.
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5.1.17 Gradient Robust Discretization of Nearly Incompressible Elasticity

General problem description

In this example we show how to implement pressure robust finite elements as proposed
by [22] using the FEInterpolatedValues class in DOpElib. For this, we consider a small
variation to the incompressible Stokes problem in [22] towards quasi incompressible linear
elasticity. The displacement and pressure are given as follows

u(x, y) =

[
200x2(1− x)2y(1− y)(1− 2y)
−200y2(10y)2x(1− x)(1− 2x)

]

p(x, y) = −10

(
x− 1

2

)3

y2 + (1− x)3

(
y − 1

2

)3

− 1

8
.

in the incompressible limit λ → ∞ of the the quasi incompressible linear elasticity
equation

−2µ∇·ε(u)−∇p = f,

∇ · u− 1

λ
p = 0, (5.16)

for given parameters λ, µ > 0 and λ “large”.
For the discretization we search (uh, ph) ∈ Vh × Qh, here given by continuous Q2

finite elements for Vh and discontinuous P1 finite elements for Qh. The gradient robust
discretization of (5.16) is given as

2µ

∫
Ω

ε(uh) : ε(vh) dx+

∫
Ω

ph∇ · vh dx =

∫
Ω

f · πdivvh dx, (5.17)

∫
Ω

qh∇ · uh dx− 1

λ

∫
Ω

phqh dx = 0 (5.18)

for all vh ∈ Vh, qh ∈ Qh where, πdiv : Vh → Xh ⊂ Hdiv is a suitable interpolation
operator satisfying

(qh,∇ · vh) = (qh∇ · πdivvh)

for all qh ∈ Qh and vh ∈ Vh. For the choice of Vh, Qh made here a suitable choice for
this space Xh is the space of Brezzi-Douglas-Marini BDM2 elements with the canonical
interpolation.

In contrast to standard mixed discretizations as discussed, e.g. in Section 5.1.1 only
some minor changes are needed which we discuss below.

In main.cc, we need to utilize modified versions of the ElementDataContainer, Face-
DataContainer and IntegratorContainer that give access to the values of πdivvh in the lo-
cal integrals for the righthandside. These classes are provided by the files interpolatedintegratordatacontainer.h,
interpolatedelementdatacontainer.h and interpolatedfacedatacontainer.h For
the instantiation, we only need to take care of the InterpolatedIntegratorDataContainer
via IDC idc(velocity component, map, fe interpolate, quadrature formula, face quadrature formula);
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here the first three arguments are new and needed for the interpolation. The velocity component

is a FEValuesExtractpor::Vector that indicates which components of the finite ele-
ment Vh×Qh should be interpolated onto Xh consisting of the element fe interpolate

here initialized as RaviartThomasNodal<2> of degree 1. The map indicates the Mapping
to be used for the transformation of the reference RaviartThomas element to the real
element.

In localpde.h, the only substantial change occurs in the ElementRightHandSide

where we need to multiply f with πdivvh. Here we utilize that the InterpolatedElementDataContainer
gives access to πdivvh by the method GetInterpolatedFEValues(). More precisely, ini-
tializing

InterpolatedFEValues<dealdim> fe_values_interpolated

= edc.GetInterpolatedFEValues();

allows to access πdivvh transparently via

fe_values_interpolated.value(i, q_point)

whereas the choice

FEValues<dealdim> fe_values = edc.GetFEValuesState();

const FEValuesExtractors::Vector disp(0);

allows to access vh via

fe_values[disp].value(i, q_point)
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5.2 Nonstationary PDEs

Until now, DOpElib provides various time-stepping schemes that are based on finite
differences. Specifically, the user can choose between the

• Forward Euler scheme (FE), which is an explicit timestepping scheme. Here, one
as to take into account that k ≤ ch2 where k denotes the timestep size and h the
local mesh cell diameter.

• Backward Euler scheme (BE), which is an implicit timestepping scheme. It is
strongly A-stable but only from first order and very dissipative. The BE-scheme
is well suited for stationary numerical examples.

• Crank-Nicolson scheme (CN), which is of second order, A-stable, has very little
dissipation but suffers from case to case from instabilities caused by rough initial-
and/or boundary data. These properties are due to weak stability (it is not strongly
A-stable).

• Shifted (or stabilized) Crank-Nicolson scheme (CN shifted), which is also of second
order, but provides global stability.

• Fractional-step-θ scheme (FS). It has second-order accuracy and is strongly A-
stable, and therefore well-suited for computing solutions with rough data.

5.2.1 Nonstationary Navier-Stokes Equations

General problem description

In this example we consider the nonstationary incompressible Navier-Stokes equation.
As in the stationary PDE Example 5.1.1, we use the symmetric fluid stress tensor, i.e.
in strong formulation we deal with

ρ∂tv − ρ∇ · (∇v +∇vT ) + ρ(v · ∇)v +∇p = f

∇ · v = 0

on time interval I = [0, T ] (with T = 80) and the fluid benchmark domain (Schaefer/-
Turek 1996). Here, we set f = 0 and the flow is driven by a Dirichlet inflow condition.

As introduced earlier, we formulate the time stepping scheme as One-step-θ scheme,
which are based on finite difference schemes. In order to keep the presentation simple,
we describe the scheme using the stokes equation and thus neglecting the nonlinearity.
Note that in the program we use the full Navier-Stokes operator.

The time interval is given by I = [0, T ]. Let vn, pn and the time step k = tn+1− tn be
given. Find vn+1, pn+1 such that:

vn+1 − kθ
(
∇ · (∇vn+1 +∇vn+1T ) +∇pn+1

)
=kθfn+1 + k(1− θ)fn

+ vn + k(1− θ)
(
∇ · (∇vn +∇(vn)T ) +∇pn

)
∇ · vn+1 = 0
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In the case of the BE-scheme, θ = 1, and the equation is reduced to

vn+1 − k(∇ · (∇vn+1 +∇vn+1T ) +∇pn) = kfn+1 + vn

∇ · vn+1 = 0

Note, that one should prefer a complete implicit treatment of the pressure p. Instead of
using θpn+1 + (1− θ)pn, the pressure appears only with θpn+1.

After discretization in time, the space is treated, as usually, with a Galerkin finite
element scheme, here based on the Taylor-Hood element Qc2/Q

c
1.

The variational formulation reads:

Problem 5.2.1 (Backward Euler (BE) timestepping problem). Let θ = 1. Find v :=
vn+1 ∈ V and p := pn+1 ∈ L:

(v, φv) + kθ(∇v +∇vT ,∇φv)− k(p,∇ · φv) = kθ(fn+1, φv) + (vn, φv) (5.19)

(∇ · v, φp) = 0 (5.20)

for all suitable test functions φv, φp ∈ V × L.
Derivation of the other timestepping problems is analogous.

Remark 5.2.2. Note that because of the zero right hand side we are allowed to multiply
(5.20) by kθ. So that we solve

kθ(∇ · v, φp) = 0

instead of (∇ · v, φp) = 0.

Specific features for solving nonstationary problems

In the following, we explain in more detail the different member functions that are
required to implement nonstationary equations.

void ElementEquation (..., double scale, double scale_ico)

The two arguments are used to distinguish between explicit components and fully implicit
components. For standard equations (such as the heat equation and the wave equation),
there is no special treatment required needed.

However, solving the Navier-Stokes equations or multi-physics problems (like fluid-
structure interaction), parts of the equations are treated with a fully implicit time-
stepping scheme.

Thus, the argument

double scale

is used to indicate that the present term can be used for implicit/explicit or mixed
discretization (such as time discretization with the Crank-Nicolson.

The other argument

double scale_ico
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is used to indicate that the present term only is treated in a fully implicit manner. For
example, the pressure term (which is of course a Lagrange multiplier of the incompress-
ibility term of the fluid). It is recommended to treat this term in a time discretization
in a fully implicit manner.

void ElementMatrix (..., double scale, double scale_ico)

The directional derivatives of the state equation are implemented in the present function.
As before, the last two parameters

double scale, double scale_ico

are used to distinguish between fully implicit are other behavior.

void ElementTimeEquation (...)

This function is used to implement the time derivative in weak formulation

(∂tv, φ)Ω.

This term is time discretized via

k−1(vn − vn−1, φ)Ω.

Here, it suffices to implement the term

(vn, φ)Ω,

because the already known term vn−1 is automatically treated by the specific time step-
ping scheme.

In contrast to this behavior, the user has the possibility to write all terms of ∂tv
explicitly. In this case, we use the

void ElementTimeEquationExplicit (...)

and we write
(vn − vn−1, φ)Ω.

This behavior is useful for multi-physics problems where other solutions variables have
to be considered around ∂tv. The user should have a look in the second Example 5.2.2
for nonstationary problems for an illustration of this function.

Consequently, the directional derivatives of the element terms are implemented in the
corresponding matrix functions, i.e.,

void ElementTimeMatrix (...), void ElementTimeMatrixExplicit
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5.2.2 Nonstationary FSI Problem

General problem description

In the present example, we solve a nonstationary fluid-structure interaction problem in
arbitrary Lagrangian-Eulerian (ALE) coordinates. The mesh motion model is based on
solving a biharmonic equation [40] rather than a linear-elastic model. The underlying
equations are stated in the following:

Problem 5.2.3 (FSI with biharmonic mesh motion). Find {v̂, û, ŵ, p̂} ∈ {v̂D + V̂0} ×
{ûD + V̂0} × V̂ × L̂, such that v̂(0) = v̂0 and û(0) = û0, for almost all time steps t, and

(Ĵ ρ̂f∂tv̂, ψ̂
v)Ω̂f

+ (ρ̂f Ĵ(F̂−1(v̂ − ∂tû) · ∇̂)v̂), ψ̂v)Ω̂f

+(Ĵ σ̂f F̂
−T , ∇̂ψ̂v)Ω̂f

− 〈ĝ, ψ̂v〉Γ̂N

+(ρ̂s∂tv̂, ψ̂
v)Ω̂s

+ (Ĵ σ̂sF̂
−T , ∇̂ψ̂v)Ω̂s

= 0 ∀ψ̂v ∈ V̂ 0,

(α̂uŵ, ψ̂
w)Ω̂f

+ (α̂u∇̂û, ∇̂ψ̂w)Ω̂f
+ (α̂u∇̂ŵ, ∇̂ψ̂w)Ω̂s

= 0 ∀ψ̂w ∈ V̂ ,

ρ̂s(∂tû− v̂, ψ̂u)Ω̂s
+ (α̂u∇̂ŵ, ∇̂ψ̂u)Ω̂f

= 0 ∀ψ̂u ∈ V̂ 0,

(d̂iv (Ĵ F̂−1v̂f ), ψ̂p)Ω̂f
+ (p̂s, ψ̂

p)Ω̂s
= 0 ∀ψ̂p ∈ L̂,

with the densities ρ̂f and ρ̂s, the viscosity νf , the Lamé parameters µs, λs and the

deformation gradient F̂ , and its determinant Ĵ . The stress tensors for the fluid and
structure are implemented by

σ̂f = −p̂I + ρ̂fνf (∇̂v̂F̂−1 + F̂−T ∇̂v̂T ),

and
σ̂s = F̂ (λstrÊI + 2µsÊ)

with Ê = 1
2(F̂ T F̂ − I). Finally, we notice that this problem is driven by a Dirichlet

inflow condition. It is possible to add a gravity term f̂f or f̂s, which would enter as a
right hand side force

−(ρ̂f Ĵ f̂f , ψ̂
v)Ω̂f

− (ρ̂sf̂s, ψ̂
v)Ω̂s

into the problem.

The ALE approach belongs to interface-tracking methods in which the mesh is moved
such that it fits in all time steps with the FSI-interface. However, this leads to a de-
generation of the ALE map. Methods to circumvent such as degeneration as long as
possible are re-meshing techniques or to use (as suggested here) a biharmonic mesh
motion technique.

Code validation for ALE-fluid and FSI problems
With the ALE code implemented in Example 5.1.10 it is possible to treat fluid prob-

lems as well as FSI computations. In the case of fluid problems the deformation gradient
and its determinant become:

F̂ := I, det F̂ = Ĵ = 1.
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The code is validated by the well-known fluid- and FSI benchmark problems [33, 20].
For the FSI test cases, the basic configuration is sketched in Fig. 5.1 at which an elastic
beam is attached behind the rigid cylinder.

(2.5, 0)

(2.5, 0.41)(0, 0.41)

(0, 0)

A=(0.6,0.2)

Ω̂

Γ̂wall

Γ̂wall

Γ̂in Γ̂out

Figure 5.1: Flow around cylinder with elastic beam with circle-center C = (0.2, 0.2) and
radius r = 0.05.

The elastic beam has length l = 0.35m and height h = 0.02m. The right lower end
is positioned at (0.6m, 0.19m), and the left end is attached to the circle. Control points
A(t) (with A(0) = (0.6, 0.2)) are fixed at the trailing edge of the structure, measuring
x- and y-deflections of the beam. Details on parameters and evaluation functionals and
other results can be found in [20, 14, 40]. The time-stepping scheme can be very easily
chosen in the main.cc function by choosing an appropriate time-stepping scheme as
explained at the beginning of this manual and detailed in the previous example.

The quantities of interest are evaluations of x- and y displacement at the point A(0) =
(0.6, 0.2) and the drag and lift forces acting on the cylinder and the elastic beam:

(FD, FL) =

∫
Sf

σ̂f · n̂f ds+

∫
Γ̂i

σ̂s · n̂s ds, (5.21)

where Sf denotes the path over the cylinder in the fluid part and Γi the interface between
the elastic beam and the fluid.

Program description

The major difference to the first nonstationary program is the introduction of the

void ElementTimeEquationExplicit (...)

to write all time derivative terms explicitly:

(vn − vn−1, φ)Ω.

This behavior is useful since (as shown in the above equations) other solutions vari-
ables have to be considered around ∂tv such as J := J(u). The same holds for the
corresponding matrix part.

Further, this example shows, how to change the vector behavior, from our default
option fullmem, where the whole vector is stored in the computers main memory. Here,
we are only interested in calculating the solution once, hence two vectors, one for the
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current time point and one for the previous one are sufficient. Hence we choose the
option only recent so that we don’t have to reserve unneccessary memory. If we need
to store the whole trajectory for some reason another option is available to circumvent
the restrictions due to the size of the main memory, it will be described in Example 5.2.3.
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5.2.3 Black-Scholes Equation

General problem description

The problem under consideration is the so called multivariate Black-Scholes equation
arising from pricing European style options in finance.
To state the general form of the equation we need some nomenclature: We consider an
option on d risky assets with maturity T > 0 and strikeprice K > 0. For the sake of
simplicity we assume the interest rate r > 0 and the volatility of the i-th asset σi > 0,
1 ≤ i ≤ d, to be constant. Besides, we assume the matrix ρ = (ρij) of the correlation
factors ρij with −1 ≤ ρij ≤ 1 for 1 ≤ i, j ≤ d, to be positive definite. Of course ρ is
symmetric with ρii = 1.
With (t, x) ∈ I = (0, T ]×Rd+ denoting the prices of the underlying assets at time t, the
problem of determining the fair price u of such an option is (after a time reversal) given
by the following equation:

∂tu−
1

2

d∑
i,j=1

σiσjρijxixj∂xi∂xju− r
d∑
i=1

xi∂xiu+ ru = 0 in (0, T ]× Rd+, (5.22a)

u(0) = u0 in Rd+. (5.22b)

The initial condition u0 ∈ C0
(
Rd+
)

(i.e. the payoff ) is given depending of the type of

the option. For example

u0 :=

{
max(

∑d
i=1 λixi −K, 0), u is a Call,

max(K −
∑d

i=1 λixi, 0), u is a Put,
(5.23)

for a plain vanilla European option on a basket of assets containing a share of 0 < λi ≤ 1
of the i-th asset. For the computation, we truncate the domain, i.e. we choose x ∈ Rd+
and consider the computational domain Ω := (x1, x1)× · · · × (xd, xd). On the new part
of the boundary Γ with Γ := {x ∈ ∂Ω|∃1≤i≤dxi = xi}) we impose asymptotic values
as Dirichlet conditions. For a put, we take u|Γ = 0. We emphasize that no boundary
conditions will be imposed on ∂Ω \ Γ.
In this particular example we examine the case of two uncorrelated stocks (with λ1 =
λ2 = 1

2) and the following parameters:

2d-Put)

actual asset value x0 (25,25)
strikeprice K 25
maturity date T 1
volatility σ (1

2 , 3
10)

cutoff x (100, 100)
interest rate r 0,05
option value u(T, x0) ca. 2,269172389
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Program description

Note that the initial conditions are only H1-regular. Because of this, the Crank-Nicolson
scheme, which is not strongly A-stable, is not suited to solve this problem. As we want
to use a second order accurate time stepping scheme, we use the shifted Crank-Nicolson
method. The rest of the program is as before.

In addition, this program shows how to change the vector behavior, from our default
option fullmem, where the whole vector is stored in the computers main memory. Here
the storage behavior is set to store on disc, where only those unknowns are loaded
into main memory that are needed in the current time step, while all other unknowns
are stored on the hard drive.

This behavior is particularly useful, if many time steps are taken; so that the whole
set of unknowns can no longer be stored in main memory, but access to all parts of the
solution is required after the solution process and thus the option only recent used in
Example 5.2.2 is not sufficient. Note that all vectors will allocate the required memory
when the vector is reinitialized to a new size. Hence, for large vectors this may need
some time.

To avoid multiple programs accessing the same files on the hard drive, a lock file is
initialized. Under normal conditions, this will be deleted once the program terminates.
However, should the program exit exceptionally, the lock file will still exist. Calling the
program in this case will produce an exception, with the following text:

Warning: During execution of ‘StateVector<VECTOR>::StateVector‘

the following Problem occurred!

The directory Results/tmp_state/ is probably already in use.

To resolve the issue, you have to delete the named directory with the temporary storage
files manually.
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5.2.4 Heat Equation in 1D

General problem description

In this example we consider one of the prototypical nonstationary equations, the parabolic
heat equation, i.e. for x ∈ Ω ⊂ Rd, t ∈ I = [0, T ], T ∈ R+, we search for the unknown
solution u : I × Ω→ R

∂tu(t, x)−∆u(t, x) = f(t, x),

u(t, x)|∂Ω = g(t, x),

u(0, x) = u0(x).

In our example, we consider the simplest case d = 1, where the Laplacian ∆ reduces
to ∂2

x. The computational domain is I × Ω = [0, 1] × [0, 1]. For further simplification,
we choose the right hand side as f = 0 as well as homogeneous Dirichlet boundary
conditions (g = 0). The initial condition is given by u0(x) = min(x, 1− x).

Program description

There are few new things compared to the other nonstationary examples. This is the
first time we solve an equation in one spatial dimension. In most cases, the dimension
dependence is covered by the LOCALDOPEDIM and LOCALDEALDIM variables (which are
defined at the beginning of the main.cc file), but there might be some places in the code
(especially your own code) where a concrete dimension number is given to an object.
There you have to replace it manually. Do not forget to insert the correct dimension in
the Makefile!
The most important feature of this example is the serial application of several time-
stepping schemes. At the moment, the following schemes are available (see also example
5.2.1):

1. Forward Euler scheme (FE)

2. Backward Euler scheme (BE)

3. Crank-Nicolson scheme (CN)

4. shifted Crank-Nicolson scheme (sCN)

5. Fractional-Step-θ scheme (FS)

All these time-stepping methods are applied in the current example in order to check
them and to compare their characteristics. To keep the computing time acceptable, we
choose a one dimensional example.
One more innovation is the output format. We want to represent the output at single
timepoints as a function graph on the space interval [0, 1]; this can be done using GNU-
PLOT, for example, so instead of .vtk files as in all former examples, we now write out
.gpl files.
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5.2.5 Heat Equation in 2D with nonlinearity

General problem description

This example differs only slightly from the previous one. Again, we consider the heat
equation, this time with an additional nonlinear term

∂tu(t, x, y)−∆u(t, x, y) + u(t, x, y)2 = f(t, x, y),

but now in two space dimensions and with known solution

u(t, x, y) = et−t
2

sin(x) sin(y).

The computational domain is I × Ω = [0, 1]× [0, π]2. From the known solution, we can
compute the appropriate data

f(t, x, y) = (3− 2t)et−t
2

sin(x) sin(y) + e(t−t2)2 sin2(x) sin2(y),

u0(x, y) = sin(x) sin(y).

Furthermore, we have to prescribe homogeneous Dirichlet boundary conditions.

Program description

The new feature of this example is the non-homogeneous right hand side. In examples
5.1.4 and 5.1.6, we regarded stationary problems with non-homogeneous right hand sides,
but up to now, we never involved the time variable into the non-homogeneity. To do
this, DOpElib yields a SetTime() function which has to be applied in the localpde.h file
as well as at the place where the RightHandSideFunction class is declared (here the
myfunctions.h file.
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5.2.6 Biot-Lamé-Navier problem

General problem description

The modeling part of this example is based on the coupled Biot-Lamé-Navier system.
The Biot system itself is a standard model in subsurface modeling [7, 8, 9]. Here, a
reservoir (the pay-zone) is modeled as a poroelastic medium with the help of Biot’s
equations. A surrounding medium (the non-pay zone) is modeled as a static elastic
solid. In fact, the Biot system is a multi-scale problem which is identified on the micro-
scale as a fluid-structure interaction problem (details on the interface law are found
in Mikelić and Wheeler (2011). This system is specifically suited for applications in
subsurface modeling for the poroelastic part, the so-called pay-zone. On the other hand,
surrounding rock (the non-pay zone) is modeled with the help of linear elasticity (Ciarlet
1984). Therefore, the final configuration belongs to a multiphysics problem in non-
overlapping domains. The nonstationary coupled system for the state is formulated
within a variational monolithically-coupled framework, which is known to be more robust
than partitioned solutions algorithms. Its discretization is carried out with help of the
Rothe method in which we first discretize in time and then in space. The configuration
is based on the augmented Mandel problem which shows the important Mandel-Cryer
effect: First increasing pressure and then decreasing pressure in time while applying
some traction force on the top boundary.

We begin by describing the setting for a pure poroelastic setting, the so-called pay-
zone. Let ΩB the domain of interest and ∂ΩB its boundary with the partition:

∂ΩB = Γu ∪ Γt = Γp ∪ Γf ,

where Γu denotes the displacement boundary (Dirichlet), Γt the total stress or traction
boundary (Neumann), Γp the pore pressure boundary (Dirichlet), and Γf the fluid flux
boundary (Neumann). Concretely, we have for a material with the displacement variable
u and its Cauchy stress tensor σ:

u = ū on Γu,

σn = t̄ on Γt,

for given ū and t̄, and the normal vector n. For the pressure with the permeability tensor
K and fluid’s viscosity ηf , we have the conditions:

p = p̄ on Γp,

−K
ηf

(
∇p− ρfg

)
· n = q̄ on Γf ,

for given p̄ and q̄; and the density ρf and the gravity g. For the initial conditions at
time τ = 0, we prescribe

p(τ = 0) = p0 in ΩB,

σ(τ = 0) = σ0 in ΩB,
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In this case of this extension (if ΩB is totally embedded in ΩS) the boundary conditions
on ∂ΩB reduce to interface conditions ∂ΩB := Γi = ΩB ∩ΩS . Let I := [0, T ] denote the
time interval.

Problem 5.2.4 (The Biot system). Find the pressure pB and displacement uB such that

∂t(cBpB + αBdivuB)

− 1

ηf
divK(∇pB − ρfg) = q in ΩB × I,

−div
(
σB(u)

)
+ αB∇pB = fB in ΩB × I,

with
σB(uB) := µB(∇uB +∇uTB) + λBdivuBI,

and the coefficients cB ≥ 0, the Biot-Willis constant αB ∈ [0, 1], (in fact, this constant
relates to the amount of coupling between the flow part and the elastic part) and the
permeability tensor K, fluid’s viscosity and its density ηf and ρf , gravity g and a volume
source term q (i.e., usually, wells for oil production and fluid injection). In the second
equation, the Lamé coefficients are denoted by λB > 0 and µB > 0 and fB is a volume
force.

The velocity vB in the porous medium is obtained with the help of Darcy’s law (Darcy
1856) and the Darcy equations which are obtained through homogenization of Stokes’s
equations It holds:

vB = − 1

ηf
K(∇pB − ρfg).

Usually the non-pay zone is described in terms of linear elasticity:

Problem 5.2.5. Find a displacement uS such that

−div
(
σS(uS)

)
= fS in ΩS × I,

with

σS(uS) := µS(∇uS +∇uTS ) + λSdivuSI,

with the Lamé coefficients µS and λS and a volume force fS. On the boundary ∂ΩS :=
ΓD ∪ ΓN , the conditions

uS = ūS on ΓD, σS(uS)nS = t̄S on ΓN ,

are prescribed with given ūS and t̄S.

It finally remains to describe the interface conditions on Γi between the two sub-
systems:

uB = uS ,

σB(uB)nB − σS(uS)nS = αpBnB,

− 1

ηf
K(∇pB − ρfg) · nS = 0.

(5.24)
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Program description

In this example, the crucial aspect (from mathematical point of view as well as from the
implementation) are the interface conditions (5.24). Here, it is important to notice that
the second condition in (5.24), requires careful implementation on the interface, which is
carried out with the help of deal.II’s FE Nothing element. Second, please do not forget
to activate the flag

HasFaces() const

{

return true;

}

The problem is driven by traction forces (Neumann conditions), which are imposed
via the

void

BoundaryEquation(...)

{

...

}

As functionals, we evaluate the pressure in two different points of the domain. The
observation should be that the pressure first starts increasing reaching a maximum and
then starts decaying. This is the so-called Mandel-Creyer effect.
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5.2.7 Isothermal Euler equations

General problem description

This example solves the isothermal Euler equations

∂t(ρv) + ∂x(p(ρ) + ρv2) = − λ

2D
v|v| − gh′ρ

∂tρ+ ∂x(ρv) = 0

on the set t ∈ (0, 1), x ∈ (0, 2). The relation

p(ρ) =
RT ρ

1− αRT ρ

depends on the user provided data for gas-constant R and temperature T as well as a
parameter α (α = 0 for ideal gases). The other parameters in the system to be provided
by the user are the friction parameter λ, the diameter D of the pipe, the gravity g and
the slope h′ of the pipe.

The discretization is done by a dG-method in space for the variables w = ρv and ρ.
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5.2.8 Fully monolithic phase-field fracture propagation: Single Edged
Notched Shear Test

General problem description

We consider phase-field fracture propagation on a slit domain, with time dependent
Dirichlet data and homogeneous Neumann data. The main novelties are:

• Imposing a variational inequality constraint (∂ϕ∂t ≤ 0) via a Lagrange multiplier
and complementarity formulation ;

• Stress splitting into tension and compression à la [25], see as well [1], located in

stress_splitting.h

• Implementation of a Newton solver that allows for an increase of the residual for
which, however, no convergence results are available:

DOpEsrc/templates/instat_step_modified_newtonsolver.h

• The localpde file:

localpde_fully_implicit.h

that provides a fully implicit implementation. The fully implicit implementation
requires a modified Newton scheme (see the previous bullet point) that allows for
a temporary increase of the Newton residual (similar to [41]).

We define the function spaces V := H1
0 (Ω)2 and W := H1(Ω). Further, we define

X := {τ ∈ W∗ | τ ≥ 0}, where W∗ is a dual space of W and K as the convex set

K := Kn = {w ∈ W|w ≤ ϕn−1 ≤ 1 a.e. on Ω}.

Let u ∈ V be the displacement and ϕ ∈ W be the phase field variable which should high-
light the crack. To realize the inequality constraint, we introduce a Lagrange multiplier
τ ∈ X as a third unknown variable.
Furthermore we denote the L2(Ω) inner product of v1 and v2 with (v1, v2). A material
is supposed to be undamaged at position x if ϕ(x) is close to 1 and completely cracked
if it is close to 0. We want to find a stationary point of the energy functional

E(u, ϕ) :=
1

2
(σ(u, ϕ), ε(u))

+
Gc
2

(
1

ε
‖1− ϕ‖2) + ε‖∇ϕ‖

under the constraint

∂tϕ ≤ 0.
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The constraint realizes the crack irreversibility. Physically-speaking: the crack cannot
heal. To derive an incremental version, the constraint is discretized in time via:

ϕ(tn+1)− ϕ(tn)

tn+1 − tn
≤ 0.

Further it is defined

σ(u, ϕ) := (1− κ)ϕ2σ(u)+ + σ(u)−,

σ(u)+ := 2µE(u)+ + λ(trace(E(u)))+I,

σ(u)− := 2µE(u)− + λ(trace(E(u)))−I,

(c)+ := max(0, c),

(c)− := c− (c)+,

E(u)+ :=
d∑
i=1

(λi)+n
T
i ni,

E(u)− :=
d∑
i=1

(λi)−n
T
i ni,

E(u) :=
1

2
(∇u+ (∇u)T ),

where c ∈ R, tn denotes the time at timestep n, λi denotes the i− th eigenvalue of E(u)
and ni the corresponding eigenvector. The idea for the choice of the energy functional
is presented in [26] (based on the original work [11, 12, 16]). To realize the inequality
constraint ϕ ≤ ϕn−1, we introduce a Lagrange multiplier τh ∈ Xh as proposed in [24,
Section 4.1]. This leads to the following discrete problem:
Choose discrete function spaces Vh ⊂ V, Uh ⊂ U , Wh ⊂ W and a proper subset Xh ⊂ X .
Given the initial data ϕn−1

h ∈ Wh. For the loading steps n = 1, 2, . . . , N solve the
following system of equations: Find uh ∈ Vh, ph ∈ Uh, ϕh := ϕnh ∈ Wn,h and τh ∈ Xh
such that (

g(ϕnh)
[
2µE+(uh) + λ(trace(E(u)))+I

]
,∇wh

)
+

(
2µ
(
E(uh)− E+(uh)

)
, E(wh)

)
+
(
λ(trace(E(u)))−I, E(wh)

)
= 0,

(1− κ)
(
ϕh2µE+(uh) + λ(trace(E(u)))+I : E(uh), ψh

)
+Gc

(
−1

ε
(1− ϕh), ψh

)
+Gcε (∇ϕh,∇ψh)− (τh, ψh) = 0,(

τh − χh, ϕh − ϕn−1
h

)
≥ 0,
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for all {wh, ψh, χh} ∈ Vh × Kh × Xh. For the implementation, the last inequality is
replaced by a non-smooth complementarity function, see, e.g., [23, Section 4.1].

The test case is the so-called single edged notched shear test. For further details about
this problem it is referred to [26, 10], and [39]. For the choice of the boundary conditions
see also [23, Section 5].

80



5 Examples for PDE Solution

5.2.9 Heat Equation in 2D with Rothe-discretization

General problem description

In this example we consider one of the prototypical nonstationary equations, the parabolic
heat equation, i.e. for x ∈ Ω ⊂ Rd, t ∈ I = [0, T ], T ∈ R+, we search for the unknown
solution u : I × Ω→ R

∂tu(t, x)−∆u(t, x) = f(t, x),

u(t, x)|∂Ω = g(t, x),

u(0, x) = u0(x).

In our example, we consider the simplest case d = 1, where the Laplacian ∆ reduces to ∂2
x.

The computational domain is I×Ω = [0, 1]×[0, 1]2. For further simplification, we choose
the right hand side as f = 0 and the initial condition is given by u0(x) = min(x1, 1−x1).
The Dirichlet-data are

g(t, x) =

{
tx2 x1 = 1,

0 otherwise.

Program description

The novelty of this program is the use of varying spatial meshes in time, i.e., we use a
Rothe-discretization, where different spatial meshes at different time-points are allowed.

To use the Rothe-Discretization, we use a different DoF-Handler, i.e., we need to
include

#include <basic/rothe_statespacetimehandler.h>

To initialize the different meshes, we prepare a vector Rothe time to dof which stores
for each time-point a number indicating the number of the DoF-Handler to be used. In
this example, we want a different DoF-Handler at each time-point, hence we initialize

std::vector<unsigned int> Rothe_time_to_dof(n_time_steps+1,0);

for(unsigned int i = 0; i < Rothe_time_to_dof.size(); i++)

Rothe_time_to_dof[i]=i;

Rothe_StateSpaceTimeHandler<FE, DOFHANDLER, SPARSITYPATTERN, VECTOR,

DIM> DOFH(triangulation, state_fe, times, Rothe_time_to_dof);

Note, that the vector Rothe time to dof requires its indices to satisfy the conditions

• Rothe_time_to_dof[0] == 0

• If Rothe_time_to_dof[i] == n for some n > 0, then there must be an index j < i
with Rothe_time_to_dof[j] == n-1.
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This allows, to use, e.g. only two DoF-Handlers, with number 0 and 1, that are used on
even and odd time-points by setting

for(unsigned int i = 0; i < Rothe_time_to_dof.size(); i++)

Rothe_time_to_dof[i]=i%2;

Similarly, one could use one DoF-Handler for the first 10 time-points and then a different
DoF-Handler by appropriately assigning values to Rothe time to dof.

The only other change to other programs is that now the refinement needs to be given
error indicators for each time-point, i.e., a std::vector<dealii::Vector<float> >

where the outer std::vector needs to have the size n time steps+1. This is imme-
diately given by the ResidualErrorContainer. Hence, for refinement of the different
spatial meshes, we just have to call

const std::vector<dealii::Vector<float> >

error_ind(h1resc.GetErrorIndicators());

DOFH.RefineSpace(SpaceTimeRefineOptimized(error_ind));

To evaluate the error indicator, we write the methods

void StrongElementResidual;

void StrongFaceResidual;

in localpde.h analogous to Example 5.1.5, except that the ElementResidual now needs
to contain the discrete time-derivative, see, e.g., [36]. Note, that in this example no
indicators for the temporal error and the mesh-change error are included.
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5.2.10 Time lagged phase-field fracture propagation: Single Edged Notched
Tension Test

General problem description

In this example, we provide an implementation if the The test case is the so-called
single edged notched tension test. For further details about this problem it is referred
to [26, 10], and [39]. For the choice of the boundary conditions see also [23, Section 5].

The formulation of the irreversibility constraint is exactly the same as in Exam-
ple 5.2.8, however, the fracture is not handled fully implicit. Instead the elasticity
equation couples with the phase-field from the previous time step, i.e., in contrast to
Example 5.2.8 the following system(

g(ϕn−1
h )

[
2µE+(uh) + λ(trace(E(u)))+I

]
,∇wh

)
+

(
2µ
(
E(uh)− E+(uh)

)
, E(wh)

)
+
(
λ(trace(E(u)))−I, E(wh)

)
= 0,

(1− κ)
(
ϕh2µE+(uh) + λ(trace(E(u)))+I : E(uh), ψh

)
+Gc

(
−1

ε
(1− ϕh), ψh

)
+Gcε (∇ϕh,∇ψh)− (τh, ψh) = 0,(

τh − χh, ϕh − ϕn−1
h

)
≥ 0,

is solved using a complementarity formulation for the variational inequality.
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5.2.11 Pressure-driven cavity - Sneddon’s benchmark

General problem description

In this example, we consider a lower-dimensional fracture in a 2-dimensional domain.
This fracture has a constant length and varying width. The driving force in this example
is a given constant pressure prescribed in the fracture. The setting is motivated by the
book of Sneddon and Lowengrub [35] and therefore known as ‘Sneddon’ benchmark or
‘pressure-driven cavity’. Analytical solutions are derived in [35] and are also discussed in
[13]. Subsequently, [39, 19] coin the proposed benchmark, and provide numerical results.

Using the notation and problem setup of Example 5.2.8 and combine it with a a given
pressure p : Ω→ R, we get the following regularized energy functional [27]:

Eε(u, ϕ) =
1

2

((
(1− κ)ϕ2 + κ

)
σ(u), e(u)

)
+ (ϕ2p,div u)

+ GC

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
,

where κ is a positive regularization parameter for the elastic energy with κ� ε. Further
the stress tensor σ(u) is given by σ(u) := 2µe(u) +λtr(e(u))I with the Lamé coefficients
µ, λ > 0. The linearized strain tensor therein is defined as e(u) := 1

2(∇u+∇uT ).

The two-dimensional domain Ω = (−10, 10)2 is sketched in the following figure:

(−10,−10) (10,−10)

(10, 10)(−10, 10)

∂Ω

Ω

crack C

transition zone of size ε

Figure 5.2: Domain Ω (in 2D) with Dirichlet boundaries ∂Ω, an initial crack C of length
2l0 and a zone of width ε, where the phase-field function ϕ is defined.

An initial crack with length 2l0 = 2.0 and thickness d of two cells on Ωc = [−1, 1] ×
[−d, d] ⊂ Ω is prescribed by help of the phase-field function ϕ, i.e., ϕ = 0 in Ωc and
ϕ = 1 in Ω \ Ωc. Note that the thickness of 2d corresponds to 2h/

√
2.

As boundary conditions, the displacements u are set to zero on ∂Ω. For the phase-field
variable, we use homogeneous Neumann conditions (traction free), i.e., ε∂nϕ = 0 on ∂Ω.
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With

V := H1
0 (Ω), Win := {w ∈ H1(Ω)|w ≤ ϕn−1 ≤ 1 a.e. on Ω}, and W := H1(Ω),

we obtain the following weak formulation:

Problem 5.2.6 (Euler-Lagrange System). Find (u, ϕ) ∈ V ×W with((
(1− κ)ϕ2 + κ

)
σ(u), e(w)

)
+ (ϕ2p,divw) = 0 ∀w ∈ V,

and

(1− κ)(ϕσ(u) : e(u), ψ − ϕ) + 2(ϕpdiv u, ψ − ϕ)

+ GC

(
−1

ε
(1− ϕ,ψ − ϕ) + ε

(
∇ϕ,∇(ψ − ϕ)

))
≥ 0 ∀ψ ∈ Win ∩ L∞(Ω).

The crack irreversibility condition is handled via a Lagrange multiplier as in Exam-
ple 5.2.8

In this example, we are especially interested in three computed quantities:

• The total crack volume (TCV) can be computed numerically using

TCVh,ε =

∫
Ω
u(x, y) · ∇ϕ(x, y) d(x, y). (5.25)

A formula for the limit can be obtained using [35]. Using symmetry of the config-
uration, i.e., uy(x, 0

+) = −uy(x, 0−), and the known crack location [−1, 1] × {0},
one obtains

TCV2D = 2

∫ ∞
−∞

uy(x, 0
+) dx,

where 0± denotes the respective limit from above or below, and uy denotes the
second (y) component of the displacement.

Using the exact representation of uy (cf. [35], page 29)

uy(x, 0
+) =

pl0
E′

(
1− x2

l20

)1/2

we obtain:

TCV2D =

∫ ∞
−∞

2uy(x, 0
+) dx =

2πpl20
E′

. (5.26)

Applied to our parameter settings, we consequently obtain the reference value for
an infinite domain as:

TCV2D ≈ 6.03186× 10−3.
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• The bulk energy EB is given by

EB =

∫
Ω

((1− κ)ϕ2 + κ)ψ(e) d(x, y). (5.27)

The strain energy functional ψ(e) in equation (5.27) is defined as

ψ(e) := µ tr(e(u)2) +
1

2
λ tr(e(u))2.

Here, no manufactured reference values are provided and we only present values
computed numerically.

• The crack energy can be computed via

EC =
GC
2

∫
Ω

(
(ϕ− 1)2

ε
+ ε|∇ϕ|2

)
d(x, y). (5.28)

Again, no manufactured reference values are provided and we only present values
computed numerically.

Further details on this numerical example can be found in [34, Chapter 7].
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5.2.12 Sneddon’s benchmark layered for incompressible solids

General problem description

Based on the setup of the previous example, we are interested in simulating a pressure-
driven cavity in a nearly incompressible material. To avoid locking effects considering
incompressible solids, a mixed form for the solid equations is proposed.

In the previous example in terms of the total crack volume, for νs = 0.49999, the
fracture in incompressible solids would not open anymore and the TCV is almost 0.
On the other hand, the formulae in [35][Section 2.4] suggest a value greater than zero.
The reason being that therein an infinite domain was assumed. To study incompressible
solids in larger domains, we use a trick and add a compressible layer as surrounding area.
Considering the figure in the previous example, now we work in a domain (−20, 20)2

which contains the previously defined domain (−10, 10)2. The surrounding layer of
width 10 is defined as a compressible material with ν = 0.2. All other parameters,
namely E, Gc, κ and Ωc are kept as before. The same compressible material is used
inside of the prescribed fracture on the set (−1, 1)× (−d, d).

Problem 5.2.7 (Euler-Lagrange System in Mixed Form). Let pg ∈ W 1,∞(Ω) be given.
For the loading steps n = 1, 2, 3, . . . , N : Find vector-valued displacements, a scalar-
valued pressure, and a scalar-valued phase-field variable {u, p, ϕ} := {un, pn, ϕn} ∈ V ×
U ×W such that(

g(ϕ) σ(u, p) e(v)
)

+ (ϕ2pg,div v) + (ϕ2∇pg,v) = 0 ∀v ∈ V, (5.29)

and

(tr e(u) , q)− 1

λ
(p, q) = 0 ∀q ∈ U , (5.30)

and

(1− κ)(ϕ σ(u, p) : e(u) , ψ−ϕ)

+ 2(ϕ pg div u, ψ−ϕ) + 2 (ϕ∇pg · u, ψ−ϕ)

+Gc

(
−1

ε
(1− ϕ,ψ−ϕ) + ε(∇ϕ,∇(ψ − ϕ))

)
≥ 0 ∀ψ ∈ K,

(5.31)

including the inequality constraint. The stress tensor σ(u, p) is given by σ(u, p) :=
2µe(u) + pI with the Lamé coefficients µ, λ > 0. The linearized strain tensor therein is
defined as in the previous example as e(u) := 1

2(∇u+∇uT ). By I, the two-dimensional
identity matrix is denoted.

Problem 5.2.8 (Discrete formulation of Problem 5.2.7). Let pg ∈ W 1,∞(Ω) be given.
For the loading steps n = 1, 2, 3, . . . , N : Find vector-valued displacements, a scalar-
valued pressure, and a scalar-valued phase-field variable {uh, ph, ϕh} := {unh, pnh, ϕnh} ∈
Vh × Uh ×Wh such that(

g(ϕh) σ(uh, ph) , e(vh)
)

+ (ϕh
2pg,div vh)

+ (ϕh
2∇pg,vh) = 0 ∀vh ∈ Vh,

(5.32)
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and

(tr e(uh) , qh)− 1

λ
(ph, qh) = 0 ∀qh ∈ Uh, (5.33)

and

(1− κ)(ϕh σ(uh, ph) : e(uh) , ψh − ϕh)

+ 2(ϕh pg div uh, ψh − ϕh) + 2 (ϕh∇pg · uh, ψh − ϕh)

+Gc

(
−1

ε
(1− ϕh, ψh − ϕh) + ε(∇ϕh,∇(ψh − ϕh))

)
≥ 0 ∀ψh ∈ Kh.

(5.34)

The mixed problem formulation allows to run test cases with Poisson ratios ν =
0.3, 0.49, 0.4999 up to the incompressible limit ν = 0.5. Further details and results can
be found in [5].
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6.1 Subject to a Stationary PDE

6.1.1 Distributed control with a linear elliptic PDE

General problem description

This example solves a distributed minimization problem and shows how to estimate the
error in the cost functional for stationary optimization problems. The problem reads:

min J(q, u) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

s.t.(∇u,∇φ) = (q + f, φ) ∀φ ∈ H1
0 (Ω)

on the domain Ω = [0, 1]2, and the data is chosen as follows:

f =

(
20π2 sin(4πx)− 1

α
sin(πx)

)
sin(2πy)

ud =
(

5π2 sin(πx) + sin(4πx)
)

sin(2πy)

and α = 10−3. Hence its solution is given by:

q =
1

α
sin(πx) sin(2πy)

u = sin(4πx) sin(2πy).

Thus the exact optimal value of the cost functional can be calculated as

J∗ = J(q, u) =
1

8

(
25π4 +

1

α

)
.

In addition the following functionals are evaluated:

MidPoint: u(0.5; 0.5)

MeanValue:

∫
Ω
u

Background information and program description

In the following, we describe all extensions to the previous problems relevant to solv-
ing PDE-based optimization with DOpElib. So far, we had only to implement the
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ElementEquation and the corresponding matrix ElementMatrix. Now, based on the
idea of the reduced cost functional, we have to compute certain additional equations
representing the adjoint, tangent, and adjoint hessian equations ElementEquation U,

ElementEquation UT, ElementEquation UTT for the state equation and in the same
terms arising from the functional itself. Let us shed some light into all equations by
giving some background information and overview first.

In abstract form, we are given the following optimization problem:

J(q, u) → min, a(q, u)(ψ) = 0 ∀ψ ∈ V

Lagrangian:
L(q, u, z) := J(q, u)− a(q, u)(z)

Optimality system (KKT system):

a′u(q, u)(φ, z) = J ′u(q, u)(φ) ∀φ ∈ V
a′q(q, u)(χ, z) = J ′q(q, u)(χ) ∀χ ∈ Q

a(q, u)(ψ) = 0 ∀ψ ∈ V

or equivalently, in terms of the Lagrangian

L′u(q, u, z)(φ) = 0 ∀φ ∈ V (Adjoint Equation)

L′q(q, u, z)(χ) = 0 ∀χ ∈ V (Gradient Equation)

L′z(q, u, z)(ψ) = 0 ∀ψ ∈ V (State Equation)

The continuous problem is discretized by a standard Galerkin method using finite di-
mensional subspaces Qh × Vh ⊂ Q× V :

J(q, u) → min, a(q, u)(ψ) = 0 ∀ψ ∈ V

Discrete saddle-point problems

a′u(qh, uh)(φh, zh) = J ′u(qh, uh)(φh) ∀φh ∈ Vh
a′q(qh, uh)(χh, zh) = J ′q(qh, uh)(χh) ∀χh ∈ Qh

a(qh, uh)(ψh) = 0 ∀ψh ∈ Vh

Solution process

In this section, we briefly discuss the solution process for the optimization problem. For
further details, we refer to the standard literature. The unconstrained optimal control
problem is reformulated as follows. We introduce the solution operator S : Q → V of
the state equation. Then:

j(q) := J(q, S(q)) → min, a(q, S(q))(Ψ) = 0 ∀Ψ ∈ V.
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The local existence and sufficient regularity of S is assumed. The necessary optimality
conditions of first and second order are

j′(q)(δq) = 0, j′′(q)(δq, δq) ≥ 0 ∀δq ∈ Q.

The derivatives of the reduced functional can be computed using the Lagrangian

L(q, u, z) = J(q, u)− a(q, u)(z)

as already introduced. Let q ∈ Q, and the corresponding state u = S(q) ∈ V be given.
To calculate the derivative of the reduced cost functional j, we introduce the dual vari-
able z ∈ V solving the

Dual equation

L′u(q, u, z)(ψ) = 0 ∀ψ ∈ V.

Then,
j′(q)(δq) = L′q(q, u, z)(δq) for δq ∈ Q.

To calculate the second derivatives, we need to solve additional equations.
Let δq ∈ Q be a given direction. Then we search δu ∈ V solving the

Tangent equation

L′′qz(q, u, z)(δq, φ) + L′′uz(q, u, z)(δu, φ) = 0 ∀φ ∈ V.

Further, we have an auxiliary

Dual for Hessian equation to find δz ∈ V solving

L′′qu(q, u, z)(δq, φ) + L′′uu(q, u, z)(δu, φ) + L′′zu(q, u, z)(δz, φ) = 0 ∀φ ∈ V.

Then, for δr ∈ Q, we can express the second derivatives of j by

j′′(q)(δq, δr) = L′′qq(q, u, z)(δq, δr)
+ L′′uq(q, u, z)(δu, δr)
+ L′′zq(q, u, z)(δz, δr).

With these terms, we can calculate the Newton direction δq, at a given iterate qn, as
solution to the problem

j′′(qn)(δq, χ) = − j′(qn)(χ) ∀χ ∈ Q.

Moreover, we would like to work in the Hilbert space Q. However, the derivative
j′(q) ∈ H∗ only. Hence, we need to calculate the Riesz representation for the gradient
∇j(q) ∈ H using the definition:

(∇j(q), δq)Q = j′(q)(δq) ∀ δq ∈ Q.
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In the given example, Q = L2(Ω) and hence the scalar product will be the standard
L2-inner product. Similarly, we can define the Hessian operator H(q) ∈ L(Q,Q) by
defining

(H(q)τq, δq)Q = j′′(q)(τq, δq) ∀ δq, τq ∈ Q.

Implementation in DOpElib

From the previous details, and the definition of the Lagrangian and its derivatives it
is clear, that the user has to provide the respective derivatives. Since the Lagrangian
consists of the PDE and the cost functional it is sufficient to provide the respective
derivatives, while DOpElib will assemble them as required. Test functions for vector
valued terms will be denoted by an index i while matrix valued terms are indexed in i
and j. Test functions in the control space Q are denoted as φqi while those in the state
space V are denoted as φi.

To solve the linear equations the following matrices are needed

ElementMatrix ⇔ ai,j = a′u(q, u)(φj , φi),

ControlElementMatrix ⇔ ai,j = (φqj , φ
q
i )Q.

The first one is required for all primal and dual PDE solves, while the second one is
needed to calculate the Riesz representation of the derivatives of j. If desired, the matrix
for the adjoint PDEs can be provided separately as ElementMatrix T, but otherwise this
will be calculated automatically from the primal matrix.

Additional terms are needed to calculate the corresponding right hand sides. These
are for the PDE the following:

ElementEquation (state) ⇔ a(q, u)(φi),

ElementRightHandSide (state) ⇔ f(φi),

ControlElementEquation (gradient or hessian) ⇔ (∇j(q), φqi )Q,

as well as

ElementEquation U (adjoint) ⇔ a′u(q, u)(φi, z),

ElementEquation Q (gradient) ⇔ a′q(q, u)(φqi , z),

the terms

ElementEquation UU (adjoint hessian) ⇔ a′′uu(q, u)(δu, φi, z),

ElementEquation UQ (hessian) ⇔ a′′uq(q, u)(δu, φqi , z),

ElementEquation QU (adjoint hessian) ⇔ a′′qu(q, u)(δq, φi, z),

ElementEquation QQ (hessian) ⇔ a′′qq(q, u)(δq, φqi , z),

ElementEquation UT (tangent) ⇔ a′u(q, u)(δu, φi),

ElementEquation QT (tangent) ⇔ a′q(q, u)(δq, φi),
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and finally

ElementEquation UTT (adjoint hessian) ⇔ a′u(q, u)(φi, δz),

ElementEquation QTT (hessian) ⇔ a′q(q, u)(φqi , δz).

As for PDE problems, it is up to the user to decide if the ElementRightHandSide is
used, or if the terms are included in the ElementEquation.

For the cost functional, we have to provide

ElementValue (all) ⇔ J(q, u),

ElementValue U (all) ⇔ J ′u(q, u)(φi),

ElementValue Q (all) ⇔ J ′q(q, u)(φi),

ElementValue UU (all) ⇔ J ′′uu(q, u)(δu, φi),

ElementValue UQ (all) ⇔ J ′′uq(q, u)(δu, φqi ),

ElementValue QU (all) ⇔ J ′′qu(q, u)(δq, φi),

ElementValue QQ (all) ⇔ J ′′qq(q, u)(δq, φqi ).

Clearly, if the PDE or cost functional contains other terms, such as boundary or face
integrals corresponding derivatives must be provided as well.

Back to the specific equations in this example

We have

a(q, u)(φ) = (∇u,∇φ)− (q + f, φ),

a′u(q, u)(φ, z) = (∇φ,∇z),
a′u(q, u)(δu, φ) = (∇δu,∇φ),

a′u(q, u)(φ, δz) = (∇φ,∇δz),
a′q(q, u)(δq, φ) = −(z, ψq),

a′q(q, u)(δq, φ) = (δq, φ),

a′q(q, u)(δq, δz) = −(δz, ψq).

For the cost functional, we have the following terms:

J(q, u) =
1

2
‖u− ud‖2 +

α

2
‖q‖2,

J ′u(q, u)(φ) = (u− ud, φ),

J ′q(q, u)(φ) = α(q, ψq),

J ′′uu(q, u)(ψ, φ) = (δu, φ).

All other terms, specifically mixed terms with QU etc. are zero in this example.
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main.cc

Finally, the main file of the optimization examples does not look very much different than
for pure PDE computations - which is one of the crucial aims of our library. Here, instead
of using a pdeproblemcontainer, we use now an optproblemcontainer which can as-
semble all additionally needed information, such as adjoint and tangent PDEs. Further-
more, we define ReducedNewtonAlgorithm and ReducedTrustregion NewtonAlgorithm

to solve the optimization problem with a linesearch and a trust-region Newton algorithm.
Of course one would be sufficient, but we wanted to show how to change optimization
solvers easily using DOpElib.
Next, in the body of the main file, we introduce a second FE function for the control
variable. Then, we define a COSTFUNCTIONAL. Finally, the problem is either solved by
calling Alg.Solve(q) and/or the user might check if the derivatives are implemented
correctly by calling Alg.CheckGrads or Alg.CheckHessian. The latter two function-
alities are highly recommended to check your implementation before wondering about
your results.
Finally, this example uses a DWR-error estimator to estimate the error made in the cost
functional. In contrast to the error estimation for PDEs here, we have to include the
error in the control by using the HigherOrderDWRContainerControl.
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6.1.2 Parameter control with a linear elliptic PDE

General problem description

This example solves the following pointwise minimization problem

min
(q,u)∈R3×H1

0 (Ω;R2)
J(q, u) =

1

2

2∑
i=0

∣∣(u− u)(xi)
∣∣2 +

α

2
‖q‖2

s.t. (∇u,∇φ) = (f(q), φ) ∀φ ∈ H1
0 (Ω;R2)

on the domain Ω = [0, 1]2, with zero Dirichlet boundary conditions and

• the observation points

x0 = (0.5, 0.5), x1 = (0.5, 0.25), x2 = (0.25, 0.25),

• the regularization parameter α = 0,

• the right hand side

f(q) = q0

(
2π2 sin(πx) sin(πy)

0

)

+ q1

(
5π2 sin(πx) sin(2πy)

0

)

+ q2

(
0

8π2 sin(2πx) sin(2πy)

)

• and the exact solution given by

q =
(
1; 0.5; 1

)
u =

(
sin(πx)(sin(πy) + 0.5 sin(2πy))

sin(2πx) sin(2πy)

)
.

Program description

In contrast to the first example, the control is now a discrete quantity (for the three
observation points) where we use the FENothing element to assign the three controls.
Here, the number of components equals the number of controls. In addition, notice that
the cost functional is of mixed type (from our computational point of view), i.e. the
first part is a point-functional whereas the regularization part requires the evaluation
of a domain integral. To handle this, we need a special integrator as well as a special
Newton-solver. Additionally, our LocalFunctional returns as his type:
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string

GetType() const

{

return "point domain";

}

Indicating, we have both some point values in the functional, as well as a domain contri-
bution, i.e., we calculate ‖q‖ =

∫
Ω |q| dx, even though this in not necessary, since α = 0

and the euclidean norm of q ∈ R3 could be evaluated more easily using an AlgebraicValue
in the functional.

This brings along that we have not only to implement the methods

ElementValue, ElementValue U,

ElementValue Q, ElementValue UU,

ElementValue UQ, ElementValue QU,

ElementValue QQ,

from FunctionalInterface, but also all the aforementioned methods with a preceding
Point (PointValue etc.).
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6.1.3 Parameter control with a nonlinear PDE from fluid dynamcis

General problem description

In this example, we solve a optimization problems from fluid dynamics. The configu-
ration is similar to the fluid optimization problem proposed by Roland Becker “Mesh
adaption for stationary flow control” (2000).

The configuration comes from the original fluid benchmark problem and has been
modified to reduce drag around the cylinder. To gain the solvability of the optimization
problem we add a quadratic regularization term to the cost functional.

Figure 6.1: Configuration of the cylinder-drag minimization problem. By sucking out
the fluid (right the y-velocity), the force on the cylinder is reduced. At left,
the x-velocity field is shown. Behind the cylinder, almost no fluid goes from
left to right, which is shown in blue color.

The computational domain is denoted by Ω with the boundary ∂Ω = Γin ∪ Γout ∪
ΓQ ∪ Γw, where Γin and Γout denote the inflow and outflow boundaries, respectively.
On Γin, we prescribe a fixed parabolic inflow profile. The part(s) Γw denote the top
and bottom boundaries. Finally, ΓQ, represent Neumann control boundaries. Here, we
prescribe

ρν∂nv − pn = qn on ΓQ

where n denotes the outer unit normal to ΓQ.
The state equations are given by: Find v and p such that

−∇ · σ(v, p) + v · ∇v = 0,

∇ · v = 0

with σ(v, p) = −pI + ρν(∇v +∇vT ).

Remark 6.1.1. Since, we use the symmetric stress tensor, we need to subtract the non-
symmetric part on the outflow boundary, related to the do-nothing condition. �

The control q enters via the weak formulation. It reads,

a(q, v, p)(φ) = (σ(v, p), φ) + (v · ∇v, φ) + 〈q, φ · n〉+ (∇ · v, χ) = 0,

The target functional is considered as

k(v, p) =

∫
ΓO

n · σ(v, p) · dds,

where ΓO denotes the cylinder boundary, and d is a vector in the direction of the mean
flow. For theoretical and numerical reasons, this functional needs to be regularized,
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including the control variable q, such that

K(q, v, p) = k(v, p) +
α

2
||q − q0||2,

where α is the Tikhonov parameter and q0 some reference control.
The rest of the program is similar to the previous optimization problems where we

formulate the state equation in a weak form a(v, p)(φ) such that the final problem reads

K(q, v, p)→ min s.t. a(q, v, p)(φ) = 0.

Program description

The implementation of this example does not introduce any new DOpElib-specific fea-
tures but shows that more complicated equations such as the Navier-Stokes system can
be used as forward problem for the optimization process. This example builds on the
previous Example 6.1.2.
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6.1.4 Control in the dirichlet boundary values

General problem description

This example solves the minimization problem

min J(q, u) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

s.t. (∇u,∇φ) = (f, φ) ∀φ ∈ H1
0 (Ω;R2)

on the domain Ω = [0, 1]2. In addition, we set the Dirichlet data of the state on the
boundary as follows

u0(0, y) = q0, u0(1, y) = q1, u0(x, 0) = q2, u0(x, 1) = q3,

u1 = q3
4.

The data is chosen as follows:

f =

(
20π2 sin(πx) sin(πy)

1

)

ud =

(
sin(πx) sin(πy) ∗ x

x

)

with α = 10.

Program description

The control in the Dirichlet boundary values is incorporated via the class LocalDirichletData
which is defined in the file localdirichletdata.h. The class is then given to the OptProblemContainer
as a template argument. This is all that is needed to use the control in the Dirichlet
boundary values. In the main file and the localpde program, we work still with the
FENothing element to assign the five controls.

Finally, we refine only the boundary of the domain, to demonstrate how refinement
driven by geometric features can be realized. To this end, the class BoundaryRefinement
in boundaryrefinement.h implements the marking base upon local information on the
individual elements.
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6.1.5 Distributed Control with Different Meshes for Control and State

General problem description

This example solves the distributed minimization problem

min J(q, u) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

s.t.(∇u,∇φ) = (q + f, φ) ∀φ ∈ H1
0 (Ω)

on the domain Ω = [0, 1]2, and the data is chosen as follows:

f =

(
20π2 sin(4πx)− 1

α
sin(πx)

)
sin(2πy)

ud =
(

5π2 sin(πx) + sin(4πx)
)

sin(2πy)

and α = 10−3. Hence its solution is given by:

q =
1

α
sin(πx) sin(2πy)

u = sin(4πx) sin(2πy)

In addition, the following functionals are evaluated:

MidPoint: uh(0.125; 0.75) L1-Value:

∫
Ω
|uh|

QError:

∫
Ω
|qh − q|2 UError:

∫
Ω
|uh − u|2

The important new feature is that we can now use two different meshes for control
and state variable. This is tested first for globally refined meshes, and then for locally
refined meshes with different refinements for the control and state variable.

Program description

In order to use different meshes for control and state we need to use the multimesh
variants of ElementDataContainer, FaceDataContainer and Integrator and we have
to choose a space time handler capable of managing multiple meshes, so we use
MethodOfLines MultiMesh SpaceTimeHandler.
The requirement for the control and state mesh is that they have a common coarse

grid, so the space time handler gets only one mesh (to ensure a common coarse grid),
but this gets copied internally so that we have two separate meshes for control and state.
We can then separately refine the mesh for control and state (see RefineControlSpace

and RefineStateSpace).
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6.1.6 Distributed control with a linear elliptic PDE using IPOPT/SNOPT

General problem description

This example solves the distributed minimization problem

min J(q, u) =
1

2
‖u− ud‖2 +

α

2
‖q‖2

s.t.(∇u,∇φ) = (q + f, φ) ∀φ ∈ H1
0 (Ω)

s.t.− 500 ≤ q ≤ 500 a.e. in Ω

on the domain Ω = [0, 1]2, and the data is chosen as follows:

f =

(
20π2 sin(4πx)− 1

α
sin(πx)

)
sin(2πy)

ud =
(

5π2 sin(πx) + sin(4πx)
)

sin(2πy)

and α = 10−3.
In addition the following functionals are evaluated:

MidPoint: u(0.125; 0.75)

MeanValue:

∫
Ω
|u|

Program description

The Problem is similar to that of OPT/StatPDE/Example1 except for the box control
constraints. The implementation of these constraints is taken care of in the main file
(where we add a constrained description lcc) and in the localconstraints.h file. This
files serves to implement the actual constraints.

In this example, we introduce the handling of local constraints whereas the mixture of
local and global constraints will be discussed in the Example 6.1.7. First, we implement
the upper and lower control bounds in localconstraints.h, i.e,

qmin ≤ q ≤ qmax.

with qmin = −500 and qmax = 500. The constraints are ‘local’, by which we mean the
constraints are imposed on the nodal values of the control vector. Thus, in the constraint
description localconstraints.h, these vectors are manipulated directly without addi-
tional integration. We note that the constraints need to be written such, that a feasible
control generates non positive entries, i.e., we calculate the vector

C(q) =

(
qmin − q
q − qmax

)
.

Second, the lcc vector is used to describe the amount of unknowns that need to be
reserved to store the constraints, and, eventually, corresponding Lagrange multipliers.
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Further information can be found in basic/constraints.h. In our example, we have
only one block in the control (The control is stored in a deal.II::BlockVector). Hence,
the lcc vector has a length of one. The only entry lcc[0] is a vector of size two (in
the case of more than one control block, each block would be given a size of 2). Each
of the two entries has a specific meaning. The first entry lcc[0][0] = 1 tells you how
many local entries in the present block are locally constrained, here it is one local entry.
(Note that this entry will typically be one. it is not one would be if we have constraints
of the type qi + qi+1 ≤ 1 for each even i, or similar combinations of multiple entries in
the control vector.)

The second entry lcc[0][1] = 2, determines the number of constraints on this local
entry. Here, we impose a lower and an upper bound, i.e., we give 2 constraints. This
information tells the SpaceTimeHandler, that the vector C(q) needs exactly twice the
amount of unknowns as the vector q. In general, the space needed for C(q) is given as

lcc[0][1]

lcc[0][0]

times the unknowns for the control.

External optimization solver

The problem is solved using the optimization library IPOPT that you can obtain for free.
To use it a correct link to the ipopt library needs to be created in DOpE/ThirdPartyLibs

by the name ipopt, i.e., you should have the file DOpE/ThirdPartyLibs/ipopt pointing
to the ipopt directory. If you have not done this you can compile the example but when
running the example you will only get an error message like
Warning: During execution of ‘Reduced IpoptAlgorithm::Solve‘

the following Problem occurred!

To use this algorithm you need to have IPOPT installed!

To use this set the WITH IPOPT CompilerFlag. If you receive this message and
have the ipopt installation complete, you might have overseen to add ipopt to your
LD LIBRARY PATH:

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
I n s t a l l a t i o n complete !

Add /home / . . . . / dope l ib −2.0/ ThirdPartyLibs / ipopt / l i b 6 4
to your $LD LIBRARY PATH v a r i a b l e

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

Alternatively the commercial optimization library SNOPT can be used in this ex-
ample. In order to use this library you need to install SNOPT on your computer and
then generate a symlink to the snopt directory (where you have the libs and the header
files) in the DOpE/ThirdPartyLibs directory named snopt, i.e., you should have the file
DOpE/ThirdPartyLibs/snopt pointing to the snopt directory. If you have not done this
you can compile the example but when running the example you will only get an error
message like
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Warning: During execution of ‘Reduced SnoptAlgorithm::Solve‘

the following Problem occurred!

To use this algorithm you need to have SNOPT installed!

To use this set the WITH SNOPT CompilerFlag.
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6.1.7 Compliance Minimization of a variable Thickness MBB-Beam

General problem description

This example implements the minimum compliance problem for the thickness optimiza-
tion of an MBB-Beam. Using the MMA-Method of K. Svanberg together with an aug-
mented Lagrangian approach for the subproblems following M. Stingl.

The implementation is done using the following three additional files:

• generalized mma algorithm.h An implementation of the MMA-Algorithm for
structural optimization using an augmented Lagrangian formulation for the sub-
problems. The subproblem is implemented using the special purpose
file augmentedlagrangianproblem.h.

• augmentedlagrangianproblem.h The problem container for the augmented La-
grangian problem.

• voidreducedproblem.h A wrapper file that eliminates u if it is not present any-
ways. This is used so that we can use the same routines to solve problems that
have no PDE constraint. This is used to fit the augmentedlagrangian problem into
our framework.

Program description

In addition to the previous Example 6.1.6, we consider now in addition one global
constraint. To calculate the correct storage needed we use the second argument of
constraints(lcc, 1), which is now one.

We use localconstraints.h and localconstraintaccessor.h to impose all con-
straints. First, we have again one control block with a lower and an upper bound,

ρmin ≤ q ≤ ρmax

with ρmin = 10−4 and ρmax = 1 (ρ denotes the density of the material). These are
implemented in localconstraintaccessor.h. The global constraint is the maximum
volume of the material, which should remain constant with the value Vmax = 0.5, i.e.,∫

Ω
q − Vmax dx ≤ 0.

Its implementation is provided in localconstraints.h where the global constraint is
handled as a functional, which again is normalized to be non-positive if the control is
feasible.
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6.1.8 Topology optimization of an MBB-Beam using SNOPT

General problem description

This example implements the topology optimization of an MBB-Beam given in
OPT/StatPDE/Example7 using the SIMP method.

The solution is computed using the commercial optimization library SNOPT, similar
to OPT/StatPDE/Example6 where IPOPT is used. This Example demonstrate how global
constraints on the control variable can be included into the optimization call.

Program description

In this example, we have now some local (point) constraints, local constraints and a
global constraint. In contrast to the previous example, these constraints are all taken
care of in the localconstraints.h file. Specifically, the point constraints are handled
by the DOpE::PointConstraints<...> function, which is also initialized in the main
file.

105



6 Examples with Optimization

6.1.9 Parameter control with a non-linear PDE from FSI dynamics

General program description

In this example we solve an optimization problem where the equations come from fluid-
structure interaction (FSI). The idea is to extend the steady FSI benchmark problem
(FSI 1, proposed by Hron/Turek) to an optimization problem where the drag is mini-
mized over the cylinder and the beam. The setting is similar to Opt Example 3. In fact,
the only novel things are to attach an elastic beam at the cylinder and to extend the
equation to fluid-structure interaction (instead of pure fluid as in Example 3).

Figure 6.2: Configuration of the FSI cylinder-beam-drag minimization problem. By
sucking out the fluid, the force on the cylinder is reduced. At left, the x-
velocity field is shown. In right figure, we the corresponding adjoint solution
is shown.

The state equation system reads:

Problem 6.1.2 (Stationary Fluid-Structure Interaction with STVK material). Let q
denote the control variable. Find U := {v̂, p̂, û} such that

(Ĵρf F̂
−1v̂ · ∇̂v̂, φ̂v)Ω̂f

+ (Ĵ σ̂f F̂
−T , ∇̂φ̂v)Ω̂f

+(Ĵ σ̂sF̂
−T , ∇̂φ̂v)Ω̂s

+ 〈q, φ̂v · n̂〉ΓQ
= 0 ∀φ̂v ∈ V̂ ,

(v̂, φ̂u)Ω̂s
+ (αu∇̂û, ∇̂φ̂u)Ω̂f

= 0 ∀φ̂u ∈ V̂ ,

(d̂iv (Ĵ F̂−1v̂f ), φ̂p)Ω̂f
+ (p̂, φ̂p)Ω̂s

= 0 ∀φ̂p ∈ L̂,

The target functional is considered as

k(U) =

∫
Γ̂O∪Γ̂i

n̂ · Ĵ σ̂(v, p)F̂−T · d̂ds,

where ΓO denotes the cylinder boundary and Γi the interface between fluid and solid,
and d̂ is a vector in the direction of the mean flow. Moreover, Ĵ and F̂ denote the
deformation gradient and its determinant as well known in fluid-structure interaction.
For theoretical and numerical reasons, this functional needs to be regularized, including
the control variable q, such that

K(q, U) = k(U) +
α

2
||q − q0||2,

where α is the Tikhonov parameter and q0 some reference control.
The rest of the program is similar to the previous optimization problems where we

formulate the state equation in a weak form a(q, U)(φ) such that the final problem reads

K(q, U)→ min s.t. a(q, U)(φ) = 0.
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Program description

This example is similar to Example 6.1.3 (both based on Example 6.1.2), except that
we have again much more complicated (nonlinear) equations. A modification of this
example and several numerical tests are presented in [31].
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6.1.10 Parameter control with a nonlinear PDE from fluid dynamics - with
cost functional not given as an integral but as function of an integral

General problem description

This example is similar to Example 6.1.3. The notable difference in the setting is that
now, the boundary control areas, where the fluid can be sucked out of the domain, are
in front of the circular inclusion. Hence the drag

k(v, p) =

∫
ΓO

n · σ(v, p) · d ds,

where ΓO denotes the cylinder boundary, and d is a vector in the direction of the mean
in-flow can become negative, i.e., minimizing the value of k(v, p) is no longer viable.

Instead, we consider the objective

K(q, v, p) =
1

2
|k(v, p)|2 +

α

2
||q − q0||2

is to be minimized.
In contrast to all previous examples, this means that the functional can no longer be

calculated by one integration, but instead the values of the integration (for the drag)
need to be post-processed.

To do so, the calculation of the functional and its derivatives is reordered in to two
steps. First the value of k(v, p) is calculated (and stored) then in a second sweep. The
value of K is calculated.

To this end the following modifications are needed in the code:
localfunctional.h There is a new method unsigned int NeedPrecomputations()

const returning the value 1 as we need one calculation of k before we can assemble the
value of the cost-functional.

This pre-iteration has the Type cost functional pre and a corresponding number
(here 0 as only one pre-iteration is performed.

In the cost functional, for the pre-iteration we set the type to boundary since k is a
boundary functional. For the evaluation of K itself the type is boundary algebraic as
we calculate the boundary integral ‖q‖2 and the algebraic calculation |k|2.

For higher derivatives, we notice that for a differentiable functions g, f : R → R it
holds for the directional derivative in direction δu(

(g

(∫
f(u(x)) dx

))′
δu = g′(

∫
f(u(x)) dx)

∫
f ′(u(x))δu(x)dx

=

∫
g′(

∫
f(u(x)) dx)f ′(u(x))δu(x)dx

Consequently, the first derivative can be calculated with only a single integration – as
a boundary integral in the present example where the factor g′ can be calculated using
the drag value in the last iterate

g′(k(v, p)) and k′(v, p)δu(x) = k(δv, δp)
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since the drag is linear in (v, p).
For the second derivative, we can calculate in the directions δu and τu by the following

observation(
g

(∫
f(u(x)) dx

))′′
(δu, τu)

= g′′(

∫
f(u(x)) dx)

∫
f ′(u(x))δu(x)dx

∫
f ′(u(x))τu(x)dx

+ g′(

∫
f(u(x)) dx)

∫
f ′′(u(x))δu(x)τu(x)dx

=

∫ (
g′′(

∫
f(u(x)) dx)

∫
f ′(u(x))δu(x)dx

)
f ′(u(x))τu(x)dx

+

∫
g′(

∫
f(u(x)) dx)f ′′(u(x))δu(x)τu(x)dx.

Consequently, the second derivative can be calculated as one boundary integral, if the
values of ∫

f(u(x)) dx and

∫
f ′(u(x))δu(x)dx

in the tangent direction δu are available by pre-computations.
To do so in the present example, the following modifications are needed in the cost

functional:

• There is a method AlgebraicValue which calculates 0.5x2 for a given value x -
here the pre-computed value of the drag.

• In the method BoundaryValue, we have to distinguish several cases. based upon
the problem type evaluated. The current value can be accessed by GetProblemType()

and if this matches

cost functional pre then we must calculate the drag-value, i.e., k(u).

cost functional pre tangent then we must calculate the derivative of the drag in
direction δu (the provided tangent-direction), i.e., k(δu) since k is linear in
its argument.

cost functional then we must calculate the rest of the functional. Here only the
integral over the control costs is needed.

• In the methods BoundaryValue U and BoundaryValue UU we calculate the entire
derivative w.r.t u (or second derivative respectively) as one integral using the
formulas for the first and second derivative, respectively. The needed values, i.e.,∫

f(u)dx =

∫
ΓO

n · σ(v, p) dds

and ∫
f ′(u(x))δu(x)dx =

∫
ΓO

n · σ(δv, δp) dds
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are available as ParamValues with the respective labels cost functional pre and
cost functional pre tangent.

Notice, that both ParamValues are a vector of the size given by unsigned int

NeedPrecomputations() const. I.e. if multiple functional parts need a pre-
integration these can be calculated in an arbitrary number of pre-integration runs.
In the case of multiple pre-integrations the method *Value needs not only to con-
sider the value of GetProblemType() but also the respective GetProblemNum()

running between 0 and NeedPrecomputations()−1. The order in the ParamVal-
ues Vector corresponds to the chosen order of integration.
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6.2 Subject to a Nonstationary PDE

6.2.1 Control of a nonlinear heat equation via the initial values

General problem description

This example is a modified version of PDE/InstatPDE/Example5. Again, we consider the
heat equation, this time with an additional nonlinear term and most important a time
derivative leading to a nonstationary optimization problem. The governing equation is

∂tu(t, x, y)−∆u(t, x, y) + u(t, x, y)2 = f(t, x, y),

with homogeneous Dirichlet-data. The computational domain is Ω× I = [0, π]2 × [0, 1].
From the known solution, we can compute the appropriate data

f(t, x, y) = (3− 2t)et−t
2

sin(x) sin(y) + e(t−t2)2 sin2(x) sin2(y),

u0(x, y) = q(x, y).

With the cost functional

min
q,u

J(q, u) =
1

2

∫
Ω

(u(1, x, y)−sin(x) sin(y))2 d(x, y)+
1

2

∫
Ω

(q(x, y)−sin(x) sin(y))2 d(x, y).

It has the optimal solution

u(t, x, y) = et−t
2

sin(x) sin(y),

q(t, x, y) = sin(x) sin(y)

and J(q, u) = 0.

Program description

The following new things differ from the PDE-Examples and the optimization examples
with stationary PDEs:

First, we need to introduce a reasonable dual time-stepping scheme in the main file since
we have to compute the adjoint equation backward in time. Next, in the file main.cc the
SpaceTimeHandler now gets an additional argument. In this case DOpEtypes::initial

which specifies that the control is entering in the initial value.

In the file localpde.h we now have to specify the Methods Init ElementRhs and
Init ElementRhs Q. They need to be adapted, since usually the InitialValue for the
PDE is auto generated from a deal.ii function in the ProblemContainer. This Value is
set in the Init ElementRhs hence we need to change this function to use the control
instead. Correspondingly we need to implement the first derivative of this with respect
to the control. –We don’t need the second derivative since it is zero anyways.–
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6 Examples with Optimization

Note: In contrast to the ,,normal” Element-terms in the PDE we assume in the
program that the Init ElementEquation is linear in the state and no other solution
variables are present. Thus no derivatives of the Init ElementEquation need to be
implemented.
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6.2.2 Control of the heat equation via a space dependent right hand side

General problem description

This example is a modified version of OPT/InstatPDE/Example1. Again, we consider the
heat equation, this time without an additional nonlinear term. The governing equation
is

∂tu(t, x, y)−∆u(t, x, y) = f(t) · q(x, y),

with homogeneous Dirichlet-data. The computational domain is Ω× I = [0, π]2 × [0, 1].
From the known solution, we can compute the appropriate data

f(t) = 2,

u0(x, y) = sin(x) sin(y).

With the cost functional

min
q,u

J(q, u) =
1

2

∫
Ω

(
u(1, x, y)−

(
2e2 − 1

e2 − 1

)
sin(x) sin(y)

)2

d(x, y) +
1

2

∫
Ω
q(x, y)2 d(x, y).

It has the optimal solution

u(t, x, y) = sin(x) sin(y),

q(x, y) = sin(x) sin(y)

together with the optimal adjoint state

z(t, x, y) =
e2

1− e2
e2(t−1) sin(x) sin(y).

and the corresponding cost functional value

J(q, u) =
1

2

( e4

(e2 − 1)2
+ 1
)π2

4
≈ 2.88382.

Program description

In this example, we demonstrate how to implement a control that acts distributed in
space and time, but has no temporal dependence. For this, the control vector type is set
to be VectorAction::stationary (the default for stationary equations). In contrast to the
case of control in the initial values, the control vector can be accessed at a all times.

Since the control has no time dependence DOpElib assumes that the control part of
the cost functional, here

1

2

∫
Ω
q2 dx

is evaluated at initial time (i.e., t = 0 in this example).
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6.2.3 Control of the heat equation via a time dependent right hand side

General problem description

This example is a modified version of OPT/InstatPDE/Example2. The governing equa-
tion is

∂tu(t, x, y)−∆u(t, x, y) = q(t) · f(x, y),

with homogeneous Dirichlet-data. Hence, we now allow for a time dependence of the
control.

The computational domain is Ω × I = [0, π]2 × [0, 1]. From the known solution, we
can compute the appropriate data

f(x, y) = sin(x) sin(y),

u0(x, y) = 0,

ud(t, x, y) = sin(x) sin(y)
(

1
4(3− 2t− 3e−2t) + 4

π2 + (1− t) 8
π2

)
.

With the cost functional

min
q,u

J(q, u) =
1

2

∫
I

∫
Ω

(
u(t, x, y)− ud(t, x, y)

)2
d(x, y) dt+

1

2

∫
I
q(t)2 dt.

It has the optimal solution

u(t, x, y) = 1
4(3− 2t− 3e−2t) sin(x) sin(y),

q(t) = 1− t

together with the optimal adjoint state

z(t, x, y) = sin(x) sin(y)
4(t− 1)

π2
.

Additionally, we evaluate the following functionals

uh(1, 0.5π, 0.5π) =
1− 3e−2

4
≈ 0.148499,

‖uh − u‖2Ω×I ,
‖qh − q‖2I .

Program description

In this example, we demonstrate how to implement a control that acts distributed in
time. For this, the control vector type is set to be VectorAction::nonstationary. Obvi-
ously one can implement space and time dependence by considering a ControlVector in
dimension 6= 0.
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6.2.4 Minimizing the spatial mean-value - cost functional involves functions
of integrals

General problem description

This example is a modified version of OPT/InstatPDE/Example1. Again, we consider the
heat equation, this time with an additional nonlinear term and most important a time
derivative leading to a nonstationary optimization problem. The governing equation is

∂tu(t, x, y)−∆u(t, x, y) + u(t, x, y)2 = f(t, x, y),

with homogeneous Dirichlet-data. The computational domain is Ω× I = [0, π]2 × [0, 1]
with the data

f(t, x, y) = (3− 2t)et−t
2

sin(x) sin(y) + e(t−t2)2 sin2(x) sin2(y),

u0(x, y) = q(x, y).

In contrast to OPT/InstatPDE/Example1, we modify the cost-functional such that a
(spatial) mean-value of zero is desired for the state. The corresponding functional is

min
q,u

J(q, u) =

∫ 1

0

1

2

∣∣∣∣∫
Ω
u(t, x, y) d(x, y)

∣∣∣∣2 dt+
1

2

∫
Ω

(q(x, y)− sin(x) sin(y))2 d(x, y).

Program description

The following things differ from the previous examples:

We are now considering a cost-functional, that can not be evaluated as one single integral.
Instead, we need to evaluate the integral

∫
Ω u(t, x, y) d(x, y) in space first in each time

step and then integrate over its absolute value in time. We have seen a similar structure
in OPT/StatPDE/Example10 6.1.10. Here, the integral in question is of the form∫

I
g(

∫
f(u(t, x))dx)dt

Consequently, we need to set unsigned int NeedPrecomputations() const to the
value 1 as we need to calculate – in each time point – the values f̃(t) =

∫
f(u(t, x))dx

prior to the evaluation of the cost functional. Then the first derivative of the functional
in the direction δu is given as(∫

I
(g
(
f̃(t)

)
dt

)′
δu =

∫
I
g′(f̃(t))

∫
f ′(u(t, x))δu(t, x)dx dt

=

∫
I

∫
g′(f̃(t))f ′(u(t, x))δu(t, x)dx dt

And for the second derivative, we also calculate the tangential derivatives

f̃u(t) =

∫
f ′(u(t, x))δu(t, x)dx =

∫
Ω
δu(t, x, y) d(x, y).
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With this the second derivative in direction δu and τu is given as(∫
I
g
(
f̃(t)

)
dt

)′′
(δu, τu)

=

∫
I
g′′(f̃(t))f̃u(t)

∫
f ′(u(t, x))τu(t, x)dx dt

+

∫
I

∫
g′(f̃(t))f ′′(u(t, x))δu(t, x)τu(t, x)dx dt

=

∫
I

∫ (
g′′(f̃(t))f̃u(t)f ′(u(t, x)) + g′(f̃(t))f ′′(u(t, x))δu(t, x)

)
τu(t, x)dx dt.

As in OPT/StatPDE/Example10 the higher derivatives can be calculated by one space-
time integral if the needed values f̃ and f̃u are available at the different time-points.
These values can be accessed as ParamValues with the respective labels cost functional pre

and cost functional pre tangent.
One further thing differs from the previous examples. This is that the cost functional

now has one part being integrated over space-time while the other is acting in space (at
initial-time) only. The two types of functionals can at present not be mixed. Hence both
terms are evaluated as a distributed integral over space-time by adding an additional
weight to the control-cost integral. This weight needs to be specially modified for the
derivatives w.r.t. the control which are evaluated at the initial time only! This mod-
ification is not exact and consequently the derivatives are not exactly calculated. The
accuracy is increased as the temporal meshes are refined. Hence, if more accuracy in the
residual is desired the temporal mesh needs to be further refined.
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The DOpElib test suite consists of regression tests. They are run to compare the out-
put to previous outputs. This is useful (necessary) after changing programming code
anywhere in the library.

• If a test succeeds, everything is fine in the library.

• If not, you should not check in your code into DOpElib. Please make sure what is
going wrong and WHY!

• Every command is computed via a Makefile in the basic example directory.

7.1 Tests with third-party packages

Please keep in mind that DOpElib does not only link to deal.II but also to third party
libraries. If these libraries are not installed, the respective regression tests will fail.

Currently the following examples link to third-party examples:

• OPT/StatPDE/Example6: IPOPT

• OPT/StatPDE/Example8: SNOPT

• PDE/StatPDE/Example10: Trilinos (via deal.II)

7.2 Where can I find the tests

In each example directory you find a sub directory ‘Test’. Herein, you find the parameter
files for meshes (*.inp) and a param file (test.prm). Moreover, the executable is denoted
by ‘test.sh’. Please make sure, that the

set never_write_list

contains every possible output

Gradient;Hessian;Tangent;Residual;Update;Control;State

That means, no solution files are written to the output. Recall, that we are just interested
in terminal output that is of course sufficient to verify the things.

Hence, the results directory should be empty

set results_dir = ./

The rest in the param file must be identically the same as in the dope.prm file in the
parent directory.
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7.3 How to start testing?

You start testing by typing

> ./test.sh Store

in the terminal.
After the run, you have to call

> ./test.sh Test

to compare your stored output. Of course, there should be no differences.
The useful point is now the following. After implementation of new pieces of code in

the DOpE library or in the examples, you can run

> ./test.sh Test

Hereby, you compare your ‘new’ output with the previous stored output.
Attention: After changes you should NOT run again

> ./test.sh Store

In that case, you overwrite your previous output.
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when Running the Examples

We have implemented various options for terminal output and data output into files that
can be controlled with the help of the respective parameter files

dope.prm

in each Examples folder.
In the following we briefly show such output and briefly explain where to control it.

8.1 Example of a terminal output: PDE/InstatPDE/Example8

Computing State Solution:

Computing Initial Values:

Newton step: 0 Residual (abs.): 9.7656e-04

Newton step: 0 Residual (rel.): 1.0000e+00

Newton step: 1 Residual (rel.): < 1.0000e-11 LineSearch {0}

Writing [Results/Mesh0/State_InstatPDEProblemContainer.00000.vtk]

Precalculating functional values

StressX: 0

Timestep: 1 (0 -> 0.0001) using Crank-Nicolson

Newton step: 0 Residual (abs.): 4.0385e-04

Newton step: 0 Residual (rel.): 1.0000e+00

Newton step: 1 Residual (rel.): 1.8656e-03 LineSearch {0}

Newton step: 2 Residual (rel.): 3.4959e-06 LineSearch {0}

Newton step: 3 Residual (rel.): 1.3608e-10 LineSearch {0}

Writing [Results/Mesh0/State_InstatPDEProblemContainer.00001.vtk]

Precalculating functional values

StressX: 6.42408

We observe the respective Newtons step, its current (relative) residual. Then, we see
at which place the result is written and the respective name of that file. Afterwards, we
calculate the functional values, here the StressX value (see the detailed description of
that example before). Then, we increment the time step number and proceed further.
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8.2 Controlling the output in the parameter file

We have implemented various options to control the output via the parameter file. Specif-
ically in the part subsection output parameters. Taking the parameter file from the
previous example it looks like:

subsection output parameters

# File format for the output of solution variables

set file_format = .vtk

# Iteration Counters that should not reflect in the outputname, seperated by

# ‘;‘

set ignore_iterations = PDENewton;Cg

# Name of the logfile

set logfile = dope.log

# Do not write files whose name contains a substring given here by a list of

# ‘;‘ separated words

set never_write_list = Gradient;Residual;Hessian;Tangent;Adjoint;Update

#set never_write_list = Gradient;Hessian;Tangent;Adjoint

# Defines what strings should be printed, the higher the number the more

# output

set printlevel = 6

# Set the precision of the newton output

set number_precision = 4

# Set manually the machine tolarance for the output

set eps_machine_set_by_user = 1.0e-11

# Directory where the output goes to

set results_dir = Results/

end

Most settings are self-explaining with the help of their respective comments provided
here. In the following, we discuss some of them in more detail though.
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8.2.1 Printlevel

Let us first look to

set printlevel = 6

Taking 5 rather than 6 yields the terminal output:

Computing State Solution:

Computing Initial Values:

Writing [Results/Mesh0/State_InstatPDEProblemContainer.00000.vtk]

Timestep: 1 (0 -> 0.0001) using Crank-Nicolson

Writing [Results/Mesh0/State_InstatPDEProblemContainer.00001.vtk]

Reducing further the number yields less and less output on the screen. For debugging
purposes in the developement stage, it might be helpful to work with print level 6.

Remark 8.2.1. In the test.prm file for running the regression tests, the print level should
be sufficiently high in order to compare ‘something’. If nothing is printed, nothing can
be compared whether DOpElib still works correctly.

Remark 8.2.2. Also

set printlevel = -1

has been implemented, which just prints all possible output on the terminal thus deac-
tivating all output filters.

8.2.2 Set never write list

With respect to graphical file output (here *.vtk), specifically in optimization many steps
in the algorithm may be useful when checking new developements. For instance, in the
previous list, we never write

set never_write_list = Gradient;Residual;Hessian;Tangent;Adjoint;Update

On the other hand, if set never write list is empty, we would write for each vector
the respective *.vtk file which requires for fine discretizations a lot of memory on the
hard disk.

Let us give an example: we set

set never_write_list = Gradient;Residual;Hessian;Tangent;Adjoint;Update

Then, only the physical solution is written as *.vtk:

Writing [Results/Mesh0/State_InstatPDEProblemContainer.00000.vtk]

If we remove Residual from that list, we obtain:

set never_write_list = Gradient;Hessian;Tangent;Adjoint;Update
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and we write the residual of the solution after each Newton step (using printlevel 6

here):

Timestep: 1 (0 -> 0.0001) using Crank-Nicolson

Writing [Results/Mesh0/Residualstate.00001.vtk]

Newton step: 0 Residual (abs.): 4.0385e-04

Newton step: 0 Residual (rel.): 1.0000e+00

Writing [Results/Mesh0/Residualstate.00001.vtk]

Newton step: 1 Residual (rel.): 1.8656e-03 LineSearch {0}

Writing [Results/Mesh0/Residualstate.00001.vtk]

Newton step: 2 Residual (rel.): 3.4959e-06 LineSearch {0}

Writing [Results/Mesh0/Residualstate.00001.vtk]

Newton step: 3 Residual (rel.): 1.3608e-10 LineSearch {0}

Writing [Results/Mesh0/State_InstatPDEProblemContainer.00001.vtk]

Precalculating functional values

StressX: 6.42408

Remark 8.2.3. By removing Update, we would also write each Newton update into a
vtk-file. These options allow detailed debugging of the code.

8.2.3 dope.log

The dope.log file contains exactly the output of the terminal during and after running
an example. This allows to double-check the output when necessary.

8.2.4 Functional output into gnuplot

At the end of a simulation (in particular a time-dependent problem), we are often inter-
ested in the temporal evolution of the functionals of interest. Here, in Example 8 it is
StressX. If too much output would appear, DOpElib passes it directly into a file:

Computing Functionals:

StressX too large. Writing to file instead:

Writing [Results/Mesh0/StressX_InstatPDEProblemContainer.00140.gpl]

This file can then be plotted using gnuplot. The behavior for time-dependent problems
is indeed usually to write all functional values into a file at the end of a computation.
For stationary problems, the functional value will be printed in the terminal.
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Kollmannsberger, Markus Kästner, Alexander Schwarz, Maximilian Igelbüscher,
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[37] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior point
filter line search algorithm for large-scale nonlinear programming. Math. Program.,
106(1):25–57, 2006.

125



Bibliography

[38] M. Walloth. Localized and efficient estimators for obstacle problems in the context
of standard residual estimators. In PAMM, volume 17, pages 767–768. Wiley-VCH
Verlag.

[39] M. F. Wheeler, T. Wick, and W. Wollner. An augmented-Lagrangian method for
the phase-field approach for pressurized fractures. Comput. Methods Appl. Mech.
Engrg., 271:69–85, 2014.

[40] T. Wick. Fluid-structure interactions using different mesh motion techniques. Com-
put. Struct., 89(13-14):1456–1467, 2011.

[41] T. Wick. An error-oriented newton/inexact augmented lagrangian approach for
fully monolithic phase-field fracture propagation. SIAM J. Sci. Comput, accepted
for publication, Preprint on http://www.cmap.polytechnique.fr/∼wick/, 2017.

126



Index

Cauchy stress tensor, 48
cost functional, 33

deviator, 44
discontinuous Galerkin, 54

fluid, 48
Eulerian framework, 48
incompressible, 48
Newtonian, 48

fluid-structure interaction (FSI), 48, 50
ALE model, 49
FSI benchmark, 50
interface, 48

functional, 33, 44, 50
boundary flux, 33
boundary integral, 44
deflection, 50
drag, 50
lift, 50
point value, 33

functional evaluation, 33

grid, 33

instationary PDE, 70
Black-Scholes equation, 70
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